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Restricted numerical shadow PJ (z) of an operator A of order
N is a probability distribution supported on the numerical
range Wx (A) restricted to a certain subset X of the set of
all pure states — normalized, one-dimensional vectors in CV.
Its value at point z € C equals the probability that the inner
product (u|A|u) is equal to z, where u stands for a random
complex vector from the set X distributed according to the
natural measure on this set, induced by the unitarily invariant
Fubini—Study measure. For a Hermitian operator A of order N
we derive an explicit formula for its shadow restricted to real
states, P%(z), show relation of this density to the Dirichlet
distribution and demonstrate that it forms a generalization of
the B-spline. Furthermore, for operators acting on a space
with tensor product structure, Ha ® Hp, we analyze the
shadow restricted to the set of maximally entangled states
and derive distributions for operators of order N = 4.
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1. Introduction

Consider a complex square matrix A or order N. Its standard numerical range is
defined as the following subset of the complex plane,

W(A) = {(ulAJu) : w € CV, [lul| =1},

where u denotes a normalized complex vector in Hy. Due to the Toeplitz—Hausdorff
theorem this set is convex, while for a Hermitian A it forms an interval belonging to the
real axis — see e.g. [1-3].

Among numerous generalizations of this notion we will be concerned with the re-
stricted numerical range,

Wx(A) = {{(u|Alu) : u € wx}, (1)

where wyx forms a certain subset of the set w of normalized complex vectors of size V.
For instance, one can choose wx as the set of all real vectors, and analyze the ‘real
shadow’ of A, denoted by Wg(A). For an operator A acting on a composed space, one
studies also numerical range restricted to tensor product states, Wg(A), and the range
Wg(A) restricted to maximally entangled states [4,5]. It is worth to emphasize a crucial
difference with respect to the standard notion: the restricted numerical range needs not
to be convex.

In order to define a probability measure supported on numerical range of W(A) it
is sufficient to consider the uniform measure on the sphere S?Y~1 and the measure
induced by the map u — (u|Alu) € W(A) [6,7]. Alternatively, one considers the space
of quantum states — equivalence classes of normalized vectors in CV, which differ by a
complex phase, u ~ e*®u, and works with the Haar measure invariant under the action
of the unitary group [8]. For any matrix A one defines in this way a probability measure
P4 (z) supported on W(A) and called numerical shadow [6] or numerical measure [7].
The former name is inspired by the fact that for a normal matrix this measure can be
interpreted as a shadow of an uniformly covered (N — 1) dimensional regular simplex
projected on a plane [8,9] (see Fig. 1). In a similar fashion, one can consider numerical
shadow of matrices over the quaternion field, defined as the pushforward measure of the
uniform measure on the sphere S4V—1,

Even though several papers on numerical shadow were published during the last five
years [6-8], the idea to associate with the numerical range a probability measure is much
older: as described in a recent review by Holbrook [10] it goes back to the early papers
of Davis [1].

Another variant of the numerical shadow of A can be obtained by taking random
points from the subset wx of the set of pure states. The corresponding probability
measure P4 (z), called restricted numerical shadow [11] (see Fig. 1 for an example of
restriction to real pure states), is by definition supported in restricted numerical range
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