

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Real numerical shadow and generalized B-splines

LINEAR

Applications

Charles F. Dunkl^a, Piotr Gawron^b, Łukasz Pawela^{b,*}, Zbigniew Puchała^{b,c}, Karol Życzkowski^{c,d}

^a Department of Mathematics, Kerchof Hall, Room 223, P.O. Box 400137,

University of Virginia, Charlottesville, VA 22904-4137, United States

^b Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Baltycka 5, 44-100 Gliwice, Poland

 $^{\rm c}$ Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Kraków, Poland

^d Center for Theoretical Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warszawa, Poland

ARTICLE INFO

Article history: Received 22 September 2014 Accepted 10 March 2015 Available online 11 April 2015 Submitted by C.-K. Li

MSC: 47A12 60B05 81P16 33C05 51M15

Keywords: Numerical range Probability measures Numerical shadow B-splines

АВЅТ КАСТ

Restricted numerical shadow $P_A^X(z)$ of an operator A of order N is a probability distribution supported on the numerical range $W_X(A)$ restricted to a certain subset X of the set of all pure states – normalized, one-dimensional vectors in \mathbb{C}^N . Its value at point $z \in \mathbb{C}$ equals the probability that the inner product $\langle u|A|u\rangle$ is equal to z, where u stands for a random complex vector from the set X distributed according to the natural measure on this set, induced by the unitarily invariant Fubini–Study measure. For a Hermitian operator A of order Nwe derive an explicit formula for its shadow restricted to real states, $P_A^{\mathbb{R}}(x)$, show relation of this density to the Dirichlet distribution and demonstrate that it forms a generalization of the B-spline. Furthermore, for operators acting on a space with tensor product structure, $\mathcal{H}_A \otimes \mathcal{H}_B$, we analyze the shadow restricted to the set of maximally entangled states and derive distributions for operators of order N = 4.

© 2015 Elsevier Inc. All rights reserved.

^c Corresponding author. *E-mail address:* lpawela@iitis.pl (L. Pawela).

http://dx.doi.org/10.1016/j.laa.2015.03.029 0024-3795/© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Consider a complex square matrix A or order N. Its standard *numerical range* is defined as the following subset of the complex plane,

$$W(A) = \{ \langle u | A | u \rangle : u \in \mathbb{C}^N, \|u\| = 1 \},\$$

where u denotes a normalized complex vector in \mathcal{H}_N . Due to the Toeplitz-Hausdorff theorem this set is convex, while for a Hermitian A it forms an interval belonging to the real axis – see e.g. [1–3].

Among numerous generalizations of this notion we will be concerned with the *re-stricted numerical range*,

$$W_X(A) = \{ \langle u | A | u \rangle : u \in \omega_X \},\tag{1}$$

where ω_X forms a certain subset of the set ω of normalized complex vectors of size N. For instance, one can choose ω_X as the set of all real vectors, and analyze the 'real shadow' of A, denoted by $W_{\mathbb{R}}(A)$. For an operator A acting on a composed space, one studies also numerical range restricted to tensor product states, $W_{\otimes}(A)$, and the range $W_E(A)$ restricted to maximally entangled states [4,5]. It is worth to emphasize a crucial difference with respect to the standard notion: the restricted numerical range needs not to be convex.

In order to define a probability measure supported on numerical range of W(A) it is sufficient to consider the uniform measure on the sphere S^{2N-1} and the measure induced by the map $u \to \langle u|A|u \rangle \in W(A)$ [6,7]. Alternatively, one considers the space of quantum states – equivalence classes of normalized vectors in \mathbb{C}^N , which differ by a complex phase, $u \sim e^{i\alpha}u$, and works with the Haar measure invariant under the action of the unitary group [8]. For any matrix A one defines in this way a probability measure $P_A(z)$ supported on W(A) and called numerical shadow [6] or numerical measure [7]. The former name is inspired by the fact that for a normal matrix this measure can be interpreted as a shadow of an uniformly covered (N-1) dimensional regular simplex projected on a plane [8,9] (see Fig. 1). In a similar fashion, one can consider numerical shadow of matrices over the quaternion field, defined as the pushforward measure of the uniform measure on the sphere S^{4N-1} .

Even though several papers on numerical shadow were published during the last five years [6–8], the idea to associate with the numerical range a probability measure is much older: as described in a recent review by Holbrook [10] it goes back to the early papers of Davis [1].

Another variant of the numerical shadow of A can be obtained by taking random points from the subset ω_X of the set of pure states. The corresponding probability measure $P_A^X(z)$, called *restricted numerical shadow* [11] (see Fig. 1 for an example of restriction to real pure states), is by definition supported in restricted numerical range Download English Version:

https://daneshyari.com/en/article/6416254

Download Persian Version:

https://daneshyari.com/article/6416254

Daneshyari.com