

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Characterization of k-commuting additive maps on rings

Xiaofei Qi^{a,*}, Jinchuan Hou^{a,b}

Department of Mathematics, Shanxi University, Taiyuan 030006, PR China
Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, PR China

ARTICLE INFO

Article history: Received 7 July 2013 Accepted 31 December 2013 Available online 31 January 2014 Submitted by V. Olshevsky

MSC: 16W10 47B47 46L10

Keywords: Rings Commuting maps k-Commuting maps

ABSTRACT

Let k be a positive integer and \mathcal{R} a ring having unit 1. Denote by $\mathcal{Z}(\mathcal{R})$ the center of \mathcal{R} . Assume that the characteristic of \mathcal{R} is not 2 and there is an idempotent element $e \in \mathcal{R}$ such that \mathcal{R} satisfies $a\mathcal{R}e = \{0\} \Rightarrow a = 0$, $a\mathcal{R}(1-e) = \{0\} \Rightarrow a = 0$, $\mathcal{Z}(e\mathcal{R}e)_k = \mathcal{Z}(e\mathcal{R}e)$ and $\mathcal{Z}((1-e)\mathcal{R}(1-e))_k = \mathcal{Z}((1-e)\mathcal{R}(1-e))$. Then every additive map $f: \mathcal{R} \to \mathcal{R}$ is k-commuting if and only if $f(x) = \alpha x + h(x)$ for all $x \in \mathcal{R}$, where $\alpha \in \mathcal{Z}(\mathcal{R})$ and h is an additive map from \mathcal{R} into $\mathcal{Z}(\mathcal{R})$. As applications, all k-commuting additive maps on prime rings and von Neumann algebras are characterized.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{R} be an associative ring. For any elements $a, b \in \mathcal{R}$, we set $[a, b]_0 = a$, $[a, b]_1 = ab - ba$, and inductively $[a, b]_k = [[a, b]_{k-1}, b]$, where k is a positive integer. Denote by $\mathcal{Z}(\mathcal{R})$ the center of \mathcal{R} and $\mathcal{Z}(\mathcal{R})_k = \{z \in \mathcal{R}: [z, a]_k = 0 \text{ for all } a \in \mathcal{R}\}$. Clearly, $\mathcal{Z}(\mathcal{R})_1 = \mathcal{Z}(\mathcal{R})$ and $\mathcal{Z}(\mathcal{R})_k \subseteq \mathcal{Z}(\mathcal{R})_m$ whenever $k \leq m$. Recall that an additive map

E-mail addresses: xiaofeiqisxu@aliyun.com (X. Qi), jinchuanhou@aliyun.com (J. Hou).

^{*} This work is partially supported by National Natural Science Foundation of China (11171249, 11101250) and Youth Foundation of Shanxi Province (2012021004).

^{*} Corresponding author.

 $f: \mathcal{R} \to \mathcal{R}$ is k-commuting if $[f(a), a]_k = 0$ for all $a \in \mathcal{R}$; particularly, is commuting if k = 1, that is, [f(a), a] = 0 for all $a \in \mathcal{R}$.

The study of commuting maps and the relation with the commutativity of rings goes back to 1955 when Divinsky [9] proved that a simple Artinian ring is commutative if it has a commuting automorphism different from the identity map. This raises an interesting question of characterizing commuting additive maps on rings. Brešar in [4] proved that, if F is a commuting additive map from a von Neumann algebra \mathcal{M} into itself, then there exist $Z \in \mathcal{Z}(\mathcal{M})$ and an additive map $h: \mathcal{M} \to \mathcal{Z}(\mathcal{M})$ such that F(A) = ZA + h(A) for all $A \in \mathcal{M}$. Later, Brešar [6] gave the same characterization of commuting additive maps on prime rings. For other results on various rings and algebras, see Refs. [5,8,14] and the references therein. Also, see a survey paper of Brešar [7] for a full account on commuting additive maps.

It is clear that the concept of k-commuting maps is a generalization of commuting maps. Generally speaking, every commuting map is k-commuting for any $k \ge 1$; but the converse is not true. Vukman [17] showed that, if there exists a nonzero derivation d on a prime ring \mathcal{R} with characteristic not 2 such that $[d(x), x]_2 = 0$ for all $x \in \mathcal{R}$, then \mathcal{R} is commutative. Also, by applying the theory of functional identities in rings, Beidar [2] and Martindale [3] studied the k-commuting additive maps respectively on prime rings and prime rings with involution. For other results on k-commuting additive maps, see [12,14,16] and the references therein.

Recently, the problem of characterizing k-commuting additive maps was studied by Du and Wang in [10], where they gave a concrete form of k-commuting additive maps on certain triangular algebras. Let $\mathcal{U} = \text{Tri}(\mathcal{A}, \mathcal{M}, \mathcal{B})$ be a triangular algebra and $f: \mathcal{U} \to \mathcal{U}$ a k-commuting additive map. If \mathcal{U} satisfies the conditions: (i) $\mathcal{Z}(\mathcal{A})_k = \pi_A(\mathcal{Z}(\mathcal{U}))$, the natural projection from \mathcal{U} onto \mathcal{A} , (ii) $\mathcal{Z}(\mathcal{B})_k = \pi_B(\mathcal{Z}(\mathcal{U}))$ and (iii) there exists $m_0 \in \mathcal{M}$ such that $\mathcal{Z}(\mathcal{U}) = \{a + b: a \in \mathcal{Z}(\mathcal{A}), b \in \mathcal{Z}(\mathcal{B}), am_0 = m_0 b\}$, then there exist a central element $z \in \mathcal{Z}(\mathcal{U})$ and an additive map $h: \mathcal{U} \to \mathcal{Z}(\mathcal{U})$ such that f(x) = zx + h(x) for all $x \in \mathcal{U}$.

The purpose of the present paper is to consider the problem of characterizing k-commuting additive maps on general rings.

Let \mathcal{R} be a ring having unit 1 and an idempotent element e, and let $\mathcal{Z}(\mathcal{R})$ denote the center of \mathcal{R} . Assume that the characteristic of \mathcal{R} is not 2 and satisfies that $a\mathcal{R}e = \{0\} \Rightarrow a = 0$, $a\mathcal{R}(1-e) = \{0\} \Rightarrow a = 0$, $\mathcal{Z}(e\mathcal{R}e)_k = \mathcal{Z}(e\mathcal{R}e)$ and $\mathcal{Z}((1-e)\mathcal{R}(1-e))_k = \mathcal{Z}((1-e)\mathcal{R}(1-e))$. Let $f: \mathcal{R} \to \mathcal{R}$ be an additive map. We show that the following three statements are equivalent: (1) f is k-commuting for positive integer $k \geq 1$; (2) f is commuting; (3) there exist $\alpha \in \mathcal{Z}(\mathcal{R})$ and an additive map $h: \mathcal{R} \to \mathcal{Z}(\mathcal{R})$ such that $f(x) = \alpha x + h(x)$ for all $x \in \mathcal{R}$ (Theorem 2.1). As applications, a characterization of k-commuting additive maps on prime rings and von Neumann algebras is obtained respectively (Corollaries 2.2–2.3).

Download English Version:

https://daneshyari.com/en/article/6416284

Download Persian Version:

https://daneshyari.com/article/6416284

Daneshyari.com