
Linear Algebra and its Applications 468 (2015) 80–86

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Extending a characterization of majorization
to infinite dimensions

Rajesh Pereira a, Sarah Plosker b,∗

a Department of Mathematics & Statistics, University of Guelph, Guelph,
ON N1G 2W1, Canada
b Department of Mathematics & Computer Science, Brandon University, Brandon,
MB R7A 6A9, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 October 2013
Accepted 25 January 2014
Available online 4 February 2014
Submitted by H. Woerdeman

MSC:
81P40
81P68
11F66

Keywords:
Majorization
Entanglement-assisted local
transformation
Dirichlet series
Mellin transformations
Completely monotone functions

We consider recent work linking majorization and trump-
ing, two partial orders that have proven useful with respect
to the entanglement transformation problem in quantum in-
formation, with general Dirichlet polynomials, Mellin trans-
forms, and completely monotone sequences. We extend a basic
majorization result to the more physically realistic infinite-
dimensional setting through the use of generalized Dirichlet
series and Riemann–Stieltjes integrals.
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1. Introduction

The problem of entanglement transformation concerns the ability to transform from
one pure state of some composite system to another, using only local operations and
classical communication (LOCC). Such manipulations of entangled states have been
characterized by way of the partial order of majorization in the finite-dimensional set-
ting [7] and the infinite-dimensional setting [8].

Quantum mechanics is inherently infinite-dimensional by nature; although much work
in quantum information theory is done under the restriction of finite dimensions, it
is desirable to generalize to the infinite-dimensional setting (such generalizations are
often highly non-trivial). In light of an extension of Nielsen’s result [7] to the infinite-
dimensional setting by way of ε-convertibility for LOCC [8], we extend the majorization
result of [9] to the infinite-dimensional setting. Herein, we view the characterization of
majorization put forward in [9] as a pure math inequality result; consequently, we do not
consider the physical ramifications of infinite-dimensional majorization.

There are several definitions for infinite-dimensional majorization; we shall use that
discussed in [8] as it best fits the physical descriptions of infinite-dimensional quantum
states. That is, since the majorization condition of Nielsen involves vectors of Schmidt
coefficients of pure states, the vectors are necessarily in �1, and therefore there is no need
to consider, for example, A. Neumann’s definition [6], which allows for vectors in �∞.
Because we are working with positive trace-class operators, the sum of the eigenvalues
that we are considering converges to 1, which leads to the promising realization that our
Dirichlet series are well-behaved.

2. Dirichlet series, Mellin transforms, and completely monotone functions

Definition 1. Let I be a real interval. A function f is said to be completely monotone
on I if (−1)nf (n)(x) � 0 for all x ∈ I and all n = 0, 1, 2, . . . .

Bernstein’s theorem on completely monotone functions states that a necessary and
sufficient condition for a function f to be completely monotone on (0,∞) is that f is the
Laplace transform of a positive measure μ:

f(s) =
∞∫
0

e−st dμ(t).

We recall that the Mellin transform of a function f on (0,∞) is the function φ(s) =∫∞
0 f(t)ts−1 dt. The Mellin and Laplace transforms are closely related: if f ∈ L1((0,∞))

is zero outside of [0, 1], then the Mellin transform of f(x) is the Laplace transform of
f(e−x). It follows that if f ∈ L1((0,∞)) is zero outside of [0, 1], then the Mellin transform
of f is completely monotone on (0,∞) if and only if f is non-negative almost everywhere.
We will use this fact in our proof of Theorem 2.
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