Note on best possible bounds for determinants of matrices close to the identity matrix

Richard P. Brent ${ }^{\text {a,*, }}$, Judy-anne H. Osborn ${ }^{\text {b }}$, Warren D. Smith ${ }^{\text {c }}$
${ }^{\text {a }}$ Australian National University, Canberra, ACT 0200, Australia
b The University of Newcastle, Callaghan, NSW 2308, Australia
${ }^{c}$ Center for Range Voting, 21 Shore Oaks Drive, Stony Brook, NY 11790, USA

A R T I C L E I N F O

Article history:

Received 20 March 2014
Accepted 27 September 2014
Available online 16 October 2014
Submitted by R. Brualdi

$M S C$:

65F40
05B20
15A15
15A42
15B34

Keywords:

Determinant
Perturbation bound
Diagonally dominant matrix
Skew-Hadamard matrix
Fredholm determinant
Maximal determinant

A B S T R A C T

We give upper and lower bounds on the determinant of a small perturbation of the identity matrix. The lower bounds are best possible, and in most cases they are stronger than well-known bounds due to Ostrowski and other authors. The upper bounds are best possible if a skew-Hadamard matrix of the same order exists.
© 2014 Elsevier Inc. All rights reserved.

[^0]Table 1
Summary of lower bound results.

Case	Lower bound	Condition
(A) general	$(1-\delta-(n-1) \varepsilon)(1-\delta+\varepsilon)^{n-1}$	$\delta+(n-1) \varepsilon \leq 1$
(B) $\delta=\varepsilon$	$1-n \varepsilon$	$n \varepsilon \leq 1$
(C) $\delta=0$	$(1-(n-1) \varepsilon)(1+\varepsilon)^{n-1}$	$(n-1) \varepsilon \leq 1$

Table 2
Summary of upper bound results.

Case	Upper bound
(A) general	$\left((1+\delta)^{2}+(n-1) \varepsilon^{2}\right)^{n / 2}$
(B) $\delta=\varepsilon$	$\left(1+2 \varepsilon+n \varepsilon^{2}\right)^{n / 2}$
(C) $\delta=0$	$\left(1+(n-1) \varepsilon^{2}\right)^{n / 2}$

1. Introduction

Many bounds on determinants of diagonally dominant matrices have been given in the literature. See, for example, Bhatia and Jain [1], Elsner [5], Horn and Johnson [8], Ipsen and Rehman [9], Ostrowski [11-13], and Price [14]. We consider the case of a matrix $A=I-E$, where I is the $n \times n$ identity matrix and the elements $e_{i j}$ of E are small. Thus, A is "close" to the identity matrix. A more general case, where A is close to a nonsingular diagonal matrix, can be reduced to this case by row and/or column scaling.

To make precise the sense in which E is small, we introduce two non-negative parameters δ and ε, and require

$$
\left|e_{i j}\right| \leq \begin{cases}\delta & \text { if } i=j \\ \varepsilon & \text { otherwise }\end{cases}
$$

We consider three cases: (A) is the general case, (B) is when $\delta=\varepsilon$, and (C) is when $\delta=0$. These cases are all of interest. Case (B) is the simplest, and was considered by Ostrowski [13] and others. Case (C) arises naturally if scaling is used to reduce the diagonal elements to 1 . Case (A) is an obvious generalization which unifies the cases (B)-(C), and is required to obtain sharp results in some applications where δ and ε have different orders of magnitude. ${ }^{1}$

For the reader's convenience, the lower and upper bound results are summarized in Tables 1-2. A comparison with previously-published bounds is given in Section 2. Our lower bounds are given in Section 3, and the upper bounds in Section 4.

2. Comparison with previous bounds

It is perhaps surprising that we have only found one of the six bounds (cases (A)-(C), lower and upper) in the literature, although their proofs use standard techniques and are not difficult.

[^1]
https://daneshyari.com/en/article/6416320

Download Persian Version:
https://daneshyari.com/article/6416320

Daneshyari.com

[^0]: * Corresponding author at: PO Box 501, Cardiff, NSW 2285, Australia. E-mail address: pert@rpbrent.com (R.P. Brent).

[^1]: ${ }^{1}$ For example, in [2, Corollary 5], an optimization problem leads to the choice $\delta \asymp \varepsilon^{2}$.

