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We give upper and lower bounds on the determinant of a 
small perturbation of the identity matrix. The lower bounds 
are best possible, and in most cases they are stronger than 
well-known bounds due to Ostrowski and other authors. The 
upper bounds are best possible if a skew-Hadamard matrix of 
the same order exists.
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Table 1
Summary of lower bound results.

Case Lower bound Condition

(A) general (1 − δ − (n − 1)ε)(1 − δ + ε)n−1 δ + (n − 1)ε ≤ 1
(B) δ = ε 1 − nε nε ≤ 1
(C) δ = 0 (1 − (n − 1)ε)(1 + ε)n−1 (n − 1)ε ≤ 1

Table 2
Summary of upper bound results.

Case Upper bound

(A) general ((1 + δ)2 + (n − 1)ε2)n/2

(B) δ = ε (1 + 2ε + nε2)n/2

(C) δ = 0 (1 + (n − 1)ε2)n/2

1. Introduction

Many bounds on determinants of diagonally dominant matrices have been given in the 
literature. See, for example, Bhatia and Jain [1], Elsner [5], Horn and Johnson [8], Ipsen 
and Rehman [9], Ostrowski [11–13], and Price [14]. We consider the case of a matrix 
A = I − E, where I is the n × n identity matrix and the elements eij of E are small. 
Thus, A is “close” to the identity matrix. A more general case, where A is close to a 
nonsingular diagonal matrix, can be reduced to this case by row and/or column scaling.

To make precise the sense in which E is small, we introduce two non-negative param-
eters δ and ε, and require

|eij | ≤
{
δ if i = j;
ε otherwise.

We consider three cases: (A) is the general case, (B) is when δ = ε, and (C) is when 
δ = 0. These cases are all of interest. Case (B) is the simplest, and was considered 
by Ostrowski [13] and others. Case (C) arises naturally if scaling is used to reduce the 
diagonal elements to 1. Case (A) is an obvious generalization which unifies the cases 
(B)–(C), and is required to obtain sharp results in some applications where δ and ε have 
different orders of magnitude.1

For the reader’s convenience, the lower and upper bound results are summarized in 
Tables 1–2. A comparison with previously-published bounds is given in Section 2. Our 
lower bounds are given in Section 3, and the upper bounds in Section 4.

2. Comparison with previous bounds

It is perhaps surprising that we have only found one of the six bounds (cases (A)–(C), 
lower and upper) in the literature, although their proofs use standard techniques and 
are not difficult.

1 For example, in [2, Corollary 5], an optimization problem leads to the choice δ � ε2.
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