Matrix-tree theorems and discrete path integration

Yurii Burman ${ }^{\text {a,b,c,* }}$, Andrey Ploskonosov ${ }^{\text {a }}$,
Anastasia Trofimova ${ }^{\text {a,b }}$
${ }^{\text {a }}$ National Research University Higher School of Economics (NRU-HSE), 101000, 20, Myasnitskaya st., Moscow, Russia
${ }^{\text {b }}$ International Laboratory of Representation Theory and Mathematical Physics, Russia
c Independent University of Moscow, Russia

A R T I C L E I N F O

Article history:

Received 24 May 2013
Accepted 26 September 2014
Available online 21 October 2014
Submitted by R. Brualdi

MSC:
 15A15

Keywords:
Matrix-tree theorem
Graph Laplacian

A B S TRACT

We calculate characteristic polynomials of operators explicitly presented as polynomials of rank 1 operators. Corollaries of the main result (Theorem 2.3) include a generalization of the Forman's formula for the determinant of the graph Laplacian [6,8], the celebrated Matrix-tree theorem by G. Kirchhoff [9], and some its extensions and analogs, both known (e.g. the Matrix-hypertree theorem by G. Masbaum and A. Vaintrob [10]) and new.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A celebrated Matrix-tree theorem (MTT) proved by G. Kirchhoff in 1847 [9] has been attracting a constant attention of specialists since then. It was given several new proofs (see e.g. [4] and the bibliography therein), was used in many contexts, sometimes quite

[^0]unexpected ([3], for just an example); there are also many generalizations of the MTT ($[1,2,5,6,8,10]$, to name just a few).

In its classical form, the MTT expresses the principal minor of some $n \times n$-matrix via summation over the set of trees on n numbered vertices. The matrix involved is a weighted sum of the operators $I-s$ where s runs through the set of all reflections in the Coxeter group A_{n-1}. In this article we generalize the MTT allowing any rank 1 operators instead of $I-s$, and any non-commutative polynomial instead of a weighted sum.

The article is organized as follows. In Section 2.1 we formulate and prove the main result, Theorem 2.3. It expresses the characteristic polynomial of an operator M given as a function of rank 1 operators M_{1}, \ldots, M_{N} by a sort of "discrete path integration". Then we consider two special cases of the theorem: linear polynomials (Section 2.2) and skew-symmetric ones (Section 2.3). In the first case the discrete path integration is reduced to summation over subsets (Corollary 2.4). In the second case we express a Pfaffian of the operator as a sum over the set of pair matchings (a.k.a. dimer structures; Theorem 2.8).

Section 3 contains some applications of the main theorem. In Section 3.1 we use Theorem 2.3 to prove a formula for the characteristic polynomial of the Laplacian of a line bundle on a graph (this formula was first obtained by R. Forman in [6] using a different method). In Section 3.2 we obtain two corollaries of the Forman's formula: the MTT (in [6] and [8] it was derived from Forman's formula as well) and the D-analog of the MTT (Corollary 3.5). In Section 3.3 we consider a discrete Scroedinger operator, which is a generalization of the graph Laplacian, and prove an expression for its characteristic polynomial.

In Section 3.4 we prove two results in a skew-symmetric case: Theorem 3.7, which is a generalization of the Matrix-hypertree theorem of [10], and its D-analog, Theorem 3.9.

2. General results

2.1. The main theorem

Let V be a vector space of dimension n with a scalar product $\langle\cdot, \cdot\rangle$. For $e, \alpha \in V$ denote by $M[e, \alpha]$ the operator

$$
M[e, \alpha](v) \stackrel{\text { def }}{=}\langle\alpha, v\rangle e
$$

$M[e, \alpha]: V \rightarrow V$ has rank 1 or is zero.
Choose an integer N and consider two sequences of vectors, $e_{1}, \ldots, e_{N} \in V$ and $\alpha_{1}, \ldots, \alpha_{N} \in V$. Define then a linear operator $M: V \rightarrow V$ as

$$
\begin{equation*}
M=P\left(M\left[e_{1}, \alpha_{1}\right], \ldots, M\left[e_{N}, \alpha_{N}\right]\right) \tag{1}
\end{equation*}
$$

where

https://daneshyari.com/en/article/6416326

Download Persian Version:

https://daneshyari.com/article/6416326

Daneshyari.com

[^0]: * Corresponding author at: National Research University Higher School of Economics (NRU-HSE), 101000, 20, Myasnitskaya st., Moscow, Russia.

 E-mail addresses: burman@mccme.ru (Yu. Burman), strashila@newmail.ru (A. Ploskonosov), nasta.trofimova@gmail.com (A. Trofimova).

