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Let c = (c1, . . . , cn)t ∈ Rn and Mn be the set of n ×n complex 
matrices. For any A ∈ Mn, define the c-numerical range and 
the c-numerical radius of A by

Wc(A) =
{

n∑
i=1

ci〈Axi, xi〉 : {x1, . . . , xn}

is an orthonormal set in C
n

}

and

wc(A) = max
{
|z| : z ∈ Wc(A)

}
,

respectively. Let Tn be the set of n × n upper triangular 
matrices. When wc(·) is a norm on Mn, mappings T on Mn

(or Tn) satisfying

wc

(
T (A) − T (B)

)
= wc(A−B)

for all A, B are characterized. As an intermediate step, we 
also characterize additive c-numerical range preservers on Mn

(or Tn).
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1. Introduction

Let Mn be the set of n × n complex square matrices. The numerical range and the 
numerical radius of A ∈ Mn are defined by

W (A) =
{
〈Ax, x〉 : x ∈ C

n, ‖x‖ = 1
}

and w(A) = max
{
|z| : z ∈ W (A)

}
respectively. These concepts have applications in pure and applied mathematics. The 
readers could refer to [10,12–14] for more information. There are many generalizations 
of the numerical range. When c = (c1, . . . , cn)t ∈ C

n, the c-numerical range and the 
c-numerical radius of A ∈ Mn are defined by

Wc(A) =
{

n∑
i=1

ci〈Axi, xi〉 : {x1, . . . , xn} is an orthonormal set in C
n

}

and

wc(A) = max
{
|z| : z ∈ Wc(A)

}
respectively. All of the above are special cases of C-numerical ranges and C-numerical 
radii of A. For any A, C ∈ Mn, the C-numerical range and radius of A are defined by

WC(A) =
{
tr
(
CUAU ∗) : U ∈ Mn is unitary

}
and

wC(A) = max
{
|z| : z ∈ WC(A)

}
respectively. The readers may refer to [16] for more information about this subject.

It is always of interest to characterize mappings with some special properties such 
as leaving certain functions, subsets or relations invariant. If the mappings are assumed 
to be linear, the problems are often called linear preserver problems. One may see [11,
21,23] and their references for more information. There is a considerable interest about 
linear preservers of different generalized numerical ranges or radii. A map T is said to 
be c-numerical range preserving if

Wc

(
T (A)

)
= Wc(A)

for all A in the domain. The readers may refer to [17] for a survey about this topic.
There is also interest in studying preservers with milder conditions than being linear. 

For example, given a norm ‖ ·‖ on a domain X, what is the form of an isometry T (with no 
linearity assumption but sometimes surjectivity assumption) such that ‖T (A) −T (B)‖ =
‖A −B‖ for all A, B ∈ X? Some problems of this type can be found in [1,2,5,8,9].
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