

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Derivations of a class of Kadison–Singer algebras

Chengjun Hou

College of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China

ARTICLE INFO

Article history: Received 7 June 2014 Accepted 15 October 2014 Available online 28 October 2014 Submitted by P. Semrl

MSC: 46L10 47L75 47B47

Keywords:
Kadison-Singer algebra
von Neumann algebra
Derivation
Unbounded operator

ABSTRACT

Let \mathcal{L} be a double triangle lattice of projections in a finite von Neumann algebra acting on a separable and complex Hilbert space \mathcal{K} . We show that every derivation from the reflexive algebra determined by \mathcal{L} into $B(\mathcal{K})$ is quasi-spatial and automatically continuous. We also obtain that every local derivation on the reflexive algebra is a derivation.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathcal{K} be a complex Hilbert space and $B(\mathcal{K})$ the algebra of all bounded linear operators on \mathcal{K} . Suppose \mathcal{A} is a subalgebra of $B(\mathcal{K})$ and \mathcal{M} is a subspace of $B(\mathcal{K})$ containing \mathcal{A} and being an \mathcal{A} -bimodule. A linear mapping δ from \mathcal{A} into \mathcal{M} is called a derivation, if $\delta(AB) = \delta(A)B + A\delta(B)$ for every A and B in \mathcal{A} . The derivation δ is called to be inner (resp., spatial) if there is an operator T in \mathcal{M} (resp., in $B(\mathcal{K})$) such that $\delta(A) = TA - AT$

E-mail address: cjhou@yzu.edu.cn.

 $^{^{\, \}dot{\alpha}}$ Supported by the NNSF of China (Grant Nos. 11271224, 11371290), NSF of Shandong Province (Grant No. ZR2012AM024).

for every A in A. More generally, if there exists a closed and densely defined operator T on K and with domain $\mathcal{D}(T)$ such that $A(\mathcal{D}(T)) \subseteq \mathcal{D}(T)$ and $\delta(A)x = (TA - AT)x$ for every A in A and x in $\mathcal{D}(T)$, then δ is said to be quasi-spatial. Clearly, the quasi-spatiality is a slightly weaker notion. In all cases, the operator T is called an implementation for innerness, spatiality or quasi-spatiality of δ .

One of the main problems in the theory of derivations for operator algebras is to investigate the automatic continuity, innerness, or (quasi-)spatiality of derivations. In 1966, Kadison and Sakai initiated the study of derivations for von Neumann algebras. Then independently proved that every derivation from a von Neumann algebra into itself is inner. The celebrated result on the automatic continuity of derivations on C^* -algebras was given by J. Ringrose, who proved that every derivation from a C^* -algebra into its Banach bimodule is automatically continuous. Since then, many important results on the theory of derivations for operator algebras, especially for (non-selfadjoint) reflexive operator algebras, were obtained by many authors [1,3,6,7,15,17].

Kadison-Singer algebras (or KS-algebras for simplicity), introduced by Ge and Yuan in [4,5], are a new class of non-selfadjoint operator algebras on Hilbert spaces. These algebras combine triangularity, reflexivity and von Neumann algebra properties into one package. More importantly, the invariant projection lattice, called a KS-lattice, of a KSalgebra can be recaptured by a minimal generating property of the lattice in the von Neumann algebra it generates. Hence the introduction of KS-algebras brings connections between selfadjoint and non-selfadjoint theories, so many techniques and tools in von Neumann algebras can be used to study these non-selfadjoint algebras. In [8], we consider the realizations of the double triangle in abstract lattice theory as a lattice \mathcal{L} of orthogonal projections acting on a Hilbert space \mathcal{K} , i.e., $\mathcal{L} = \{0, P_1, P_2, P_3, I\}$ with $P_i \wedge P_j = 0$ and $P_i \vee P_j = I$ for different i and j, where P_i 's are orthogonal projections on \mathcal{K} and I is the identity operator on \mathcal{K} . We proved that, if \mathcal{L} generates a finite von Neumann algebra, then it is not reflexive and the reflexive lattice it generates is topologically homeomorphic to the two-dimensional sphere \mathbb{S}^2 (plus two distinct points corresponding to zero and I). In general, the reflexive lattice is a KS-lattice, and the corresponding reflexive algebra is a KS-algebra.

As a continuation of our study on the Hochsheild cohomology group and automorphisms for KS-algebras in [7,2], the purpose of this paper is to investigate the automatic continuity and (quasi-)spatiality of derivations of KS-algebras generated by double triangle lattices of projections in finite von Neumann algebras, defined in [8]. We first use the techniques and theory of unbounded operators affiliated with finite von Neumann algebras to characterize the structure of the class of KS-algebras, and relate them with transitive algebras (on different Hilbert spaces). Then, we show that every derivation on the reflexive algebra is quasi-spatial and automatically continuous. Finally, we prove that every local derivation on the reflexive algebra is a derivation. We remark that, when the double triangle lattice $\mathcal{L} = \{0, P_1, P_2, P_3, I\}$ is strongly closed [11], i.e., one of the vector sums $P_i(\mathcal{K}) + P_j(\mathcal{K})$ ($i \neq j$) of the ranges of P_1 , P_2 and P_3 is closed, Pang and Yang obtained the same results in [17]. In general, the double triangle in this paper is not

Download English Version:

https://daneshyari.com/en/article/6416344

Download Persian Version:

https://daneshyari.com/article/6416344

Daneshyari.com