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time algorithms for such problems include matchgates and
matchcircuits, which are based on Pfaffians. In particular,
they use gates which are expressible in terms of a vector of

MSC: sub-Pfaffians of a skew-symmetric matrix. We introduce a new
15A15 type of circuit based instead on determinants, with seemingly
15A69 different expressive power. In these determinantal circuits,
15A24 a gate is represented by the vector of all minors of an arbitrary
18D10 matrix. Determinantal circuits permit a different class of
03D15 gates. Applications of these circuits include proofs of theorems

from algebraic graph theory including the Chung-Langlands
formula for the number of rooted spanning forests of a graph
and computing Tutte polynomials of certain matroids. They
also give a strategy for simulating quantum circuits with
closed timelike curves. Monoidal category theory provides a
useful language for discussing such counting problems, turning
combinatorial restrictions into categorical properties. We
introduce the counting problem in monoidal categories and
count-preserving functors as a way to study FP subclasses of
problems in settings which are generally #P-hard. Using this
machinery we show that, surprisingly, determinantal circuits
can be simulated by Pfaffian circuits at quadratic cost.
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1. Introduction

Let Vectc be the category of finite-dimensional vector spaces and linear transforma-
tions over the base field C. A string diagram [11] in Vectc is a tensor (contraction)
network. Fixing such a diagram, the problem of computing the morphism represented is
the tensor contraction problem, which is in general #P-hard (examples include weighted
counting constraint satisfaction problems [7]).

We study complex-valued tensor contraction problems in subcategories of Vectc by
considering them as diagrams in a monoidal category. For a survey of the rich diagram-
matic languages that can be specified similarly see [23] and the references therein. By
a circuit we mean a combinatorial counting problem expressed as a string diagram in a
monoidal subcategory of Vectc (that is, a tensor contraction network). Such diagrams
generalize weighted constraint satisfaction problems and Boolean circuits (such as by
requiring planarity), and are often related to existing description languages. Subcate-
gories of Vectc can faithfully represent Boolean [14] and quantum circuits [2], counting
constraint satisfaction problems, and many other problems [9].

Suppose we have a problem £; a common example are counting constraint satisfaction
problems [6], perhaps with some restrictions such as planarity. Such a problem can be
described by the data of a monoidal word (see e.g. [13, Chapter 12]) and a interpretation
[23] map ¢ : £ — C that assigns values to primitive terms in the word. Then deter-
mining which morphism is obtained is a tensor contraction problem in some monoidal
category C.

From the point of view of complexity theory, we are interested in the class FP which is
comprised of the functions {0,1}* — N computable by a deterministic polynomial-time
Turing machine (see e.g. [1, p. 344]). A second functor h : C — S from a category C in
which the contraction problem (Problem 2.1) is in FP and a subcategory S of Vectc that
preserves the solution to the FP problem serves to characterize the problems which can
be solved in polynomial time according to a particular contraction scheme.

The motivation of this paper comes from holographic algorithms [24] and our attempts
to generalize it and give it a uniform language. This and related schemes work by exploit-
ing some combinatorial identity or kernel relating an exponential sum (corresponding
to performing the tensor contraction by a naive algorithm) and a polynomial time op-
eration that yields the same result. They can be viewed as a complementary alternative
method to geometric complexity theory [22] in the study of which counting problems
(such as computing a permanent) may be embedded in a determinant computation at
polynomial cost.

We formulate a class of circuits based on determinants and show that the correspond-
ing tensor contraction problem is solvable in polynomial time. The existence of such a
class was conjectured in [15]. A circuit class based on Pfaffians of minors had already
been given [18] and the formula for the number of rooted spanning forests of a graph [8]
hinted at the kernel to use for determinantal circuits. Indeed, we can recover the theorem
using determinantal circuits.
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