

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Each symplectic matrix is a product of four symplectic involutions

LINEAR ALGEBRA and its

Innlications

Ralph John de la Cruz

Institute of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines

ARTICLE INFO

Article history: Received 8 July 2014 Accepted 10 October 2014 Available online 29 October 2014 Submitted by V.V. Sergeichuk

MSC: 15A21 15A23

Keywords: Symplectic matrices Involutions Coninvolutions Square zero matrices Hamiltonian matrices

ABSTRACT

Gustafson, Halmos, and Radjavi in 1973 proved that each matrix A with det $A = \pm 1$ is a product of four involutions. We prove that these involutions can be taken to be symplectic if A is symplectic (every symplectic matrix has unit determinant). Using this result we give an alternative proof of Laffey's theorem that every nonsingular even size matrix is a product of skew symmetric matrices. Ballantine in 1978 proved that each matrix A with $|\det A| = 1$ is a product of four coninvolutions. We prove that these coninvolutions can be taken to be symplectic if A is symplectic. We also prove that each Hamiltonian matrix is a sum of two square zero Hamiltonian matrices.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We show that each symplectic matrix of size greater than two is a product of four symplectic involutions $(A^2 = I)$ or four symplectic coninvolutions $(A\overline{A} = I)$ (see

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.10.016} 0024-3795 \ensuremath{\oslash} \ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\otimes}$

E-mail address: rjdelacruz@math.upd.edu.ph.

Theorems 27 and 32). Recall that a nonsingular matrix $A \in \mathbb{C}^{2n \times 2n}$ is called *symplectic* if $J^{-1}A^TJ = A^{-1}$, where

$$J := \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}.$$

A symplectic matrix A preserves the bilinear form $\langle x, y \rangle_J := x^T J y$, that is, $\langle Ax, Ay \rangle_J = \langle x, y \rangle_J$ for all $x, y \in \mathbb{C}^{2n \times 2n}$.

A lot of work has been done on the products of involutions and structured involutions. Wonenburger [33] (see also [5,10,17]) used the theory of invariant factors to show that a matrix is a product of two involutions if and only if it is nonsingular and similar to its inverse. Wonenburger [32,33] also proved that each orthogonal matrix is a product of two orthogonal involutions, and that each symplectic matrix is a product of two skew symplectic $(J^{-1}A^TJ = -A^{-1})$ involutions. Halmos and Kakutani [16] proved that each unitary operator on an infinite dimensional complex Hilbert space is a product of four involutions. Radjavi [29] obtained a similar result for the group of all unitary operators with determinant ± 1 on finite dimensional complex Hilbert spaces. He also proved that each matrix of size n > 1 with determinant ± 1 is a product of 2n - 1simple involutions $(A^2 = I \text{ and } \operatorname{rank}(A - I) = 1)$, see [30]. By Liu [25], if $T \in \mathbb{C}^{n \times n}$, det $T = \pm 1$ and dim $(\ker(T - zI)) \leq |n/2|$ for each complex number z, then T is a product of three involutions. He also proved that if T is a product of three involutions, then dim $(\ker(T-zI)) \leq \lfloor 3n/4 \rfloor$ for each complex number z such that $z^4 \neq 1$. Gustafson, Halmos, and Radjavi [15] used the rational canonical form of matrices to prove that each matrix with determinant ± 1 is a product of four involutions.

The product of coninvolutions has received much less attention. By Ballantine [6], a matrix T is a product of coninvolutions if and only if $|\det T| = 1$. Abara, Merino, and Paras [1] proved that T is a product of two coninvolutions if and only if T is similar to \overline{T}^{-1} . Coninvolutions are also studied because of their close relation to the theory of consimilarity and condiagonalizability, see [19,22].

Lin, Mehrmann, and Xu [24] used the theory of Kronecker canonical forms and symplectic matrix pencils to give a canonical form of *conjugate symplectic* matrices $(J^{-1}A^*J = A^{-1})$ with respect to conjugate symplectic similarity. Horn and Merino [18] proved that two symplectic matrices are similar if and only if they are symplectically similar. We use this to give a *canonical form of symplectic matrices with respect to symplectic similarity* (see Lemma 5).

Denote by $\mathcal{SI}_{2n}(m)$ the set of all products of *m* symplectic involutions. We show that

$$\mathcal{SI}_{2n}(1) \subset \mathcal{SI}_{2n}(2) \subset \mathcal{SI}_{2n}(3) \subset \mathcal{SI}_{2n}(4),$$

and that these inclusions are strict. We prove equivalent conditions for a symplectic matrix to be a product of two symplectic involutions, one of which is that its number of Jordan blocks of size k corresponding to each eigenvalue λ is even, see Theorem 8.

Download English Version:

https://daneshyari.com/en/article/6416364

Download Persian Version:

https://daneshyari.com/article/6416364

Daneshyari.com