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We study a family of Cayley graphs on the group of n × n
matrices Mn(F ), where F is a finite field and n is a natural 
number, with the connection set of GLn(F ). We find that this 
graph is strongly regular only when n = 2. We find diameter 
of this graph and we show that, every matrix in Mn(F ) is 
either invertible or sum of two invertible matrices. Moreover, 
we show that GMn(F ) is class 1 if and only if char F = 2. 
Finally, it is shown that for each graph G and each finite 
field F , G is an induced subgraph of Cay(Mn(F ), GLn(F )).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let F be a finite field, and n be a natural number. Let Mn(F ) and GLn(F ) denote the 
set of n ×n matrices over F and the set of n ×n invertible matrices over F , respectively. 
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The unitary Cayley graph of additive group Mn(F ), GMn(F ) = Cay(Mn(F ), GLn(F )), 
is the Cayley graph whose vertex set is Mn(F ) and edge set is {{A, B} : A, B ∈
Mn(F ) and det(A −B) �= 0}. The chromatic number, clique number and independence 
number of GMn(F ) are given in [6] along with other results. For some other recent papers 
on unitary Cayley graphs, we refer the reader to [1,5–7].

Theorem 1.1. (See [6].) Let F be a finite field, and n be a positive integer. Then 
ω(GMn(F )) = |F |n.

Theorem 1.2. (See [6].) Let F be a finite field, and n be a positive integer. Then 
α(GMn(F )) = |F |n2−n.

An edge regular graph (erg) with parameters (n, k, λ) is a graph with n vertices that 
is regular of valency k and that has the following property:

• For any two adjacent vertices x, y, there are exactly λ vertices adjacent to both x
and y.

A graph of order n is called strongly regular graph (srg) with parameters (n, k, λ, μ)
whenever

• Each vertex is adjacent to k vertices.
• For any two adjacent vertices x, y, there are exactly λ vertices adjacent to both x

and y.
• For any two non-adjacent vertices x, y, there are exactly μ vertices adjacent to both x

and y.

Let F be a finite field of order q. A matrix in Mn(F ) is a linear derangement if it is 
invertible and does not fix any non-zero vector. Such a matrix is characterized as not 
having 0 or 1 as an eigenvalue. Let en be the number of linear derangements and define 
e0 = 1. Recall from [9] that en satisfies the recursion

en = en−1
(
qn − 1

)
qn−1 + (−1)nqn(n−1)/2. (1)

2. Unitary Cayley graph over Mn(F )

Lemma 2.1. Let n be a natural number, and F be a finite field. The unitary Cayley graph 
GMn(F ) is |GLn(F )|-regular and every two adjacent vertices of GMn(F ) has en common 
neighbors.

Proof. Since GMn(F ) = Cay(Mn(F ), GLn(F )) is a Cayley graph, it is well known that 
GMn(F ) is |GLn(F )|-regular. Assume that A and B are adjacent. The set of com-
mon neighbors of A and B is N(A) ∩ N(B) = (A + GLn(F )) ∩ (B + GLn(F )). Let 
ϕ : (A + GLn(F )) ∩ (B + GLn(F )) −→ ((A − B) + GLn(F )) ∩ GLn(F ) be defined 
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