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Spatial correlation matrices appear in a large variety of 
applications. For example, they are an essential component 
of spatial Gaussian processes, also known as spatial linear 
models or Kriging estimators, which are powerful and well-
established tools for a multitude of engineering applications 
such as the design and analysis of computer experiments, 
geostatistical problems and meteorological tasks.
In radial basis function interpolation, Gaussian correlation 
matrices arise frequently as interpolation matrices from 
the Gaussian radial kernel function. In the field of data 
assimilation in numerical weather prediction, such matrices 
arise as background error covariances.
Over the past thirty years, it was observed by several authors 
from several fields that the Gaussian correlation model is 
exceptionally prone to suffer from ill-conditioning, but a 
quantitative theoretical explanation for this anomaly was 
lacking. In this paper, a proof for the special position of the 
Gaussian correlation matrix is given. The theoretical findings 
are illustrated by numerical experiment.
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1. Introduction

The spatial linear model in the classical setting (see [1–3]) is defined as follows. Con-
sider a real-valued covariance stationary Gaussian process in d ∈ N spatial dimensions

y(x) = f(x)Tβ + ε(x); ε(x) ∼ N
(
0, σ2), x ∈ R

d,

where f(x) = (f1(x), ..., fp(x))T is the regressor vector and β = (β1, ..., βp) is the vector 
of regression coefficients. Let {x1, . . . , xn} ⊂ R

d be a set of mutually distinct sample 
points. Suppose that the stationary covariance structure is modeled via a positive definite 
covariance function cov(y(xi), y(xj)) = σ2ρ(θ, (xi − xj)), by convention parametrized 
such that for v ∈ R

d \ {0},

ρ(θ, v) →
{

1, for ‖θ‖ → 0
0, for ‖θ‖ → ∞,

with coordinate-wise range-parameters θ = (θ1, . . . , θd), also referred to as the model’s 
hyper-parameters. The reciprocal values 1/θk are called the correlation lengths. For a 
vector Y = (y(x1), . . . , y(xn))T ∈ R

n of n observations, let R := (ρ(θ, (xi − xj)))ij ∈
R

n×n be the corresponding correlation matrix and r(x) := (ρ(θ, (xi − x)))i ∈ R
n. The 

best linear unbiased predictor is

ŷ(x) = f(x)Tβ + r(x)TR−1(Y − Fβ),

where the matrix F features the regressor vectors f(xi)T (i = 1, . . . , n) as rows and 
β = (FTR−1F )−1FTR−1Y is the generalized least-squares solution to the regression 
problem. Up to an additive constant, the profile log likelihood is

L(Y, θ) = −1
2
(
n log

(
σ2(θ)

)
+ log

(
det

(
R(θ)

)))
, (1)

where σ2(θ) = 1/n(Y − Fβ)TR−1(θ)(Y − Fβ). Both the predictor and the likelihood 
function require to compute the inverse of the correlation matrix, which may be replaced 
by solving linear systems of the form Rv = b.

Closely related to Kriging is radial basis function (RBF) interpolation [4,5]. Here, 
Gaussian correlation matrices arise frequently as interpolation matrices, also referred to 
as distance matrices, and, as in Kriging, it is required to solve linear systems featuring 
such matrices as operators.

In the field of data assimilation for numerical weather prediction [6,7], the inverses of 
spatial correlation matrices appear in the area-defining optimization problem, see e.g. 
[7, Eq. (1)].

As a consequence, the accuracy and numerical robustness in all of the aforementioned 
applications depend crucially on the correlation matrices’ condition numbers, a fact that 
has been acknowledged by several authors and is still subject to ongoing investigations.
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