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Regularized Total Least Squares is a useful approach for solv-
ing ill-posed overdetermined systems of equations when both 
the model matrix and the observed data are contaminated 
by noise. A Newton-based Regularized Total Least Squares 
method was proposed by Lee et al. (2013) [16], but may not 
be efficient for large scale problems. Here we consider two 
projection-based algorithms applied to this method for the so-
lution of the large scale problem. The first fixes the underlying 
subspace dimension, while the second expands the subspace 
dynamically during the iterations by employing a generalized 
Krylov subspace expansion. Experimental results demonstrate 
that the two projection-based algorithms can be successfully 
applied for the solution of the large scale Regularized Total 
Least Squares problems.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We are considering the overdetermined linear system

Xy ≈ b, (1)
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with the matrix X ∈ Rm×n, where m ≥ n, the noise-contaminated observed data 
b ∈ Rm, and the solution y ∈ Rn. In practice, many situations occur in which errors 
exist in both the observed data b and the data matrix X. In this case, it is appropriate 
to adopt the Total Least Squares (TLS) model (cf. [6, §6.3], [27, Chapters 1–3]). The 
TLS solution minimizes the sum of squared norms given by

min
(
‖E‖2

F + ‖r‖2
2
)
, (2)

such that for some y ∈ Rn,

(X + E)y = b + r.

In our context, the matrix X is ill-conditioned, thus the TLS solution

yTLS = arg miny
(∥∥b − (X + E)y

∥∥2
2 + ‖E‖2

F

)
(3)

of the linear system (1) is dominated by errors in X and b, possibly making it meaning-
less [27, Chapter 7]. A recent characterization of the condition of this problem is given by 
Gratton et al. [26]. To stabilize the solution yTLS , we employ the Tikhonov regulariza-
tion which chooses a linear operator L and a parameter δ so that the solution y satisfies 
the condition ‖Ly‖2 ≤ δ. Common choices for L include the identity, a first-order deriva-
tive, and a second-order derivative operator. The regularization parameter δ comes from 
knowledge of the underlying physical model. Therefore, using Tikhonov regularization, 
we reformulate the problem of (2) as

yTLS(δ) = arg miny
(∥∥b − (X + E)y

∥∥2
2 + ‖E‖2

F

)
subject to ‖Ly‖2 ≤ δ. (4)

Thus the Lagrangian from Eq. (4), as used by Golub, Hansen, and O’Leary [4], is

L(E,y, β) =
∥∥b − (X + E)y

∥∥2
2 + ‖E‖2

F + β
(
‖Ly‖2

2 − δ2). (5)

The Lagrange multiplier β > 0, not known a priori, is chosen to control the size of 
the solution y. A more general model of constrained total least squares is given by Lu 
et al. [17].

In [4], Golub et al. show that, if the constraint ‖Ly‖2 ≤ δ is active, the solution 
yTLS(δ) of (4), with a properly chosen parameter β, is equivalent to the solution y(λ, μ)
of the linear system

M(λ, μ)y(λ, μ) = XTb, (6)

where

M(λ, μ) = XTX + λLTL− μI, (7)
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