

Contents lists available at ScienceDirect

## Linear Algebra and its Applications

www.elsevier.com/locate/laa

# On the inclusion matrix $W_{23}(v)$



LINEAR

lications

M.H. Ahmadi, N. Akhlaghinia, G.B. Khosrovshahi\*, Ch. Maysoori

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

#### ARTICLE INFO

Article history: Received 5 October 2013 Accepted 19 June 2014 Available online 23 August 2014 Submitted by R. Brualdi

MSC: 05B20

Keywords: Inclusion matrices t-Design Trades Standard trades Standard basis Halving

#### ABSTRACT

For a v-set X,  $W_{23}(v)$  is a  $\binom{v}{2} \times \binom{v}{3}$  inclusion matrix where rows and columns are indexed by pairs and triples of X, respectively, and for row T and column K,  $W_{23}(v)(T, K) = 1$ if  $T \subseteq K$  and zero otherwise. In this paper, we classify the basis elements of the  $\operatorname{null}_{\mathbb{Z}}(W_{23}(v))$ , derived from the Gaussian elimination on  $W_{23}(v)$  (called standard basis), into five classes. Then, we present a new algorithm to construct a (2, 3, v)-halving for a feasible v, i.e. a nowhere zero T(2, 3, v)-trade.

@ 2014 Published by Elsevier Inc.

### 1. Introduction

The inception of inclusion matrices in the literature goes back to early seventies of the last century when two fundamental papers appeared almost simultaneously in 1973 [11,20]. Although these matrices have many applications in design theory [3,12,16,19,20] and coding theory [6,17], only recently they have become a focal of interest for their own

\* Corresponding author.

E-mail address: rezagbk@ipm.ir (G.B. Khosrovshahi).

 $\label{eq:http://dx.doi.org/10.1016/j.laa.2014.06.031} 0024-3795 (© 2014 Published by Elsevier Inc.$ 

rights [2,5,7,8,10,15,18]. Although the subject of this paper is to study a special case of these matrices, namely  $W_{23}(v)$ , nevertheless some of the definitions and theorems are stated in a more general forms.

Integers t, k, and v with  $0 \le t \le k \le v$  are considered. Let X be a linearly ordered v-set, and

$$\binom{X}{i} := \{A \subseteq X : |A| = i\}, \quad 0 \le i \le v.$$

The inclusion matrix  $W_{tk}(v)$  (for short  $W_{tk}$ ) is defined to be a  $\binom{v}{t}$  by  $\binom{v}{k}$  (0,1)-matrix whose rows and columns are indexed by (and referred to) the members of  $\binom{X}{t}$  and  $\binom{X}{k}$ , respectively, where

$$W_{tk}(v)(T,K) := \begin{cases} 1 & \text{if } T \subseteq K \\ 0 & \text{otherwise,} \end{cases} \quad T \in \binom{X}{t}, \ K \in \binom{X}{k}.$$

Let 1 be the all 1-vector, and  $\lambda$  be a non-negative integer. We call the following equation the fundamental equation of design theory,

$$W_{tk} f = \lambda \mathbf{1}. \tag{1}$$

- Every integral solution of Eq. (1) is called a signed t- $(v, k, \lambda)$  design.
- For  $\lambda > 0$ , every non-negative integral solution of Eq. (1) is called a *t*-( $v, k, \lambda$ ) design.
- For  $\lambda = 0$ , every integral solution of Eq. (1) is called a T(t, k, v)-trade.
- A T(t, k, v)-trade with entries 1 or -1 is called a (t, k, v)-halving.

In this paper, we present a method for constructing a (2,3,v)-halving, which proves the following conjecture for t = 2 and k = 3.

**Hartman's Conjecture.** For  $0 \le i \le t$ , there is a (t, k, v)-halving if and only if  $\binom{v-i}{k-i}$  is even for  $i = 0, \ldots, t$ .

For t = 2 and k = 3, Dehon [4] has proved that  $\binom{X}{3}$  is halvable if and only if  $v = 2 \pmod{4}$ . Furthermore, the conjecture has been verified by Ajoodani-Namini for t = 2 [1].

More specifically, in this paper, first we construct a basis for the null space of  $W_{23}(v)$  coming from Gaussian elimination. Then by classifying the elements of this basis, we introduce a new algorithm for constructing a (2, 3, v)-halving.

#### 2. Notations and some necessary materials

In this section we provide some necessary information about trades, standard trades, standard basis, and starting blocks of trades.

Download English Version:

https://daneshyari.com/en/article/6416387

Download Persian Version:

https://daneshyari.com/article/6416387

Daneshyari.com