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1. Introduction

Given a vector x = (x1, x2, . . . , xr) in R r, we write x↓ := (x↓
1, x

↓
2, . . . , x

↓
r) for the 

vector obtained by rearranging the components of x in the decreasing order. For two 
vectors x = (x1, x2, . . . , xr) and y = (y1, y2, . . . , yr) in R r, we say that x is majorized by 
y and write x ≺ y if

k∑
1

x↓
i ≤

k∑
1

y↓i (k = 1, 2, . . . , r − 1)

and
r∑
1

x↓
i =

r∑
1

y↓i .

In matrix theory, numerous eigenvalue and trace inequalities are derived from majoriza-
tion techniques. It is natural to ask if these inequalities can be extended to matrices 
over quaternions and octonions. The goal of this paper is to prove some eigenvalue and 
trace inequalities in the setting of simple Euclidean Jordan algebras via majorization 
techniques.

The organization of the paper is as follows. In Section 2, we cover the basic mate-
rial dealing with Euclidean Jordan algebras and majorization theory. In Section 3, we 
prove a Thompson’s triangle inequality version in simple Euclidean Jordan algebras. In 
Section 4, we introduce the concept of trace p-norm and study some related inequali-
ties. In Section 5, we investigate some inequalities involving eigenvalues of sum of two 
objects in simple Euclidean Jordan algebras. In Section 6, we study the block type eigen-
value inequalities. In Section 7, we show some eigenvalue inequalities involving quadratic 
representations. In Section 8, we present more eigenvalue and trace inequalities.

2. Preliminaries

2.1. Euclidean Jordan algebras

We assume that the reader is familiar with the basic Euclidean Jordan algebra theory 
and recall some concepts used in this paper from Euclidean Jordan algebras. Most of 
these can be found in [3].

Throughout this paper, let (V, ◦, 〈·, ·〉) denote a Euclidean Jordan algebra: V is a finite 
dimensional vector space over R (the field of real numbers) with inner product 〈x, y〉 and 
Jordan product x ◦y. The symmetric cone of V is the cone of squares K := {x ◦x : x ∈ V }. 
In such an algebra, one can define the linear automorphism group Aut(V ) in the following 
way (see [3]): Λ ∈ Aut(V ) if Λ : V → V is invertible and Λ(x ◦ y) = Λ(x) ◦ Λ(y) for 
all x, y ∈ V . We use the notation x ≥ 0 (x > 0) when x ∈ K (respectively, x ∈ Ko

(=interior (K))) and x ≤ 0 (x < 0) when −x ≥ 0 (−x > 0).



Download English Version:

https://daneshyari.com/en/article/6416389

Download Persian Version:

https://daneshyari.com/article/6416389

Daneshyari.com

https://daneshyari.com/en/article/6416389
https://daneshyari.com/article/6416389
https://daneshyari.com

