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Let F denote an algebraically closed field, and fix a nonzero
q € F that is not a root of unity. We consider the g-tetrahedron
algebra X, over F. It is known that each finite-dimensional ir-
reducible X,-module of type 1 is a tensor product of evaluation
modules. This paper contains a comprehensive description of
the evaluation modules for X,. This description includes the
following topics. Given an evaluation module V for X, we dis-
play 24 bases for V' that we find attractive. For each basis we
give the matrices that represent the Xg4-generators. We give
the transition matrices between certain pairs of bases among
the 24. It is known that the cyclic group Z4 acts on X, as a
group of automorphisms. We describe what happens when V'
is twisted via an element of Z4. We discuss how evaluation
modules for X, are related to Leonard pairs of g-Racah type.
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1. Introduction

The g-tetrahedron algebra X, was introduced in [10]. This algebra is associative, non-
commutative, and infinite-dimensional. It is defined by generators and relations. There
are eight generators, and it is natural to identify each of these with an orientation on
an edge in a tetrahedron. From this point of view the generating set looks as follows.
In the tetrahedron, a pair of opposite edges are each oriented in both directions. The
four remaining edges are each oriented in one direction, to create a directed 4-cycle.
Thus the cyclic group Z4 acts transitively on the vertex set of the tetrahedron, in a
manner that preserves the set of edge-orientations. The relations in X, are described
as follows. For each doubly oriented edge of the tetrahedron, the product of the two
edge-orientations is 1. For each pair of edge-orientations that create a directed 2-path
involving three distinct vertices, these edge-orientations satisfy a ¢g-Weyl relation. For
each pair of edges in the tetrahedron that are opposite and singly oriented, the two
associated edge-orientations satisfy the cubic g-Serre relations. By construction, the Z4
action on the tetrahedron induces a Z, action on X, as a group of automorphisms.

We will be discussing the quantum enveloping algebra U,(slz), the loop algebra
Uy (L(sly)) [10, Section 8], and an algebra A, called the positive part of Uq(sAlg) [10,
Definition 9.1]. These algebras are related to X, in the following way. Each face of the
tetrahedron is surrounded by three edges, of which two are singly oriented and one is
doubly oriented. The resulting four edge-orientations generate a subalgebra of X, that
is isomorphic to Uy, (sl2) [10, Proposition 7.4], [21, Proposition 4.3]. Upon removing one
doubly oriented edge from the tetrahedron, the remaining six edge-orientations generate
a subalgebra of X, that is isomorphic to U, (L(slz)) [21, Proposition 4.3]. For each pair of
edges in the tetrahedron that are opposite and singly oriented, the two associated edge-
orientations generate a subalgebra of X, that is isomorphic to A, [21, Proposition 4.1].

The above containments reveal a close relationship between the representation theories
of Mg, Uy(L(slz)), and A,. Before discussing the details, we comment on Ug(L(slz)).
In [1], Chari and Pressley classify up to isomorphism the finite-dimensional irreducible
Uq(L(sly))-modules. This classification involves a bijection between the following two
sets: (i) the isomorphism classes of finite-dimensional irreducible Uy(L(slz))-modules
of type 1; (ii) the polynomials in one variable that have constant coefficient 1. The
polynomial is called the Drinfel’d polynomial.

The representation theories for X, and U, (L(sly)) are related as follows. Let V' denote
a X,-module. Earlier we mentioned a subalgebra of X, that is isomorphic to U,(L(sl2)).
Upon restricting the X, action on V to this subalgebra, V' becomes a U, (L(sl2))-module.
The restriction procedure yields a map from the set of X,-modules to the set of
Uy (L(sly))-modules. By [7, Remark 1.8] and [10, Remark 10.5], this map induces a bi-
jection between the following two sets: (i) the isomorphism classes of finite-dimensional
irreducible X ,-modules of type 1; (ii) the isomorphism classes of finite-dimensional ir-
reducible U, (L(sl2))-modules of type 1 whose associated Drinfel’d polynomial does not
vanish at 1. (We follow the normalization conventions from [21].) In [21], Miki extends
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