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We consider tropical hemispaces, defined as tropically convex sets
whose complements are also tropically convex, and tropical semi-
spaces, defined as maximal tropically convex sets not containing
a given point. We introduce the concept of (P , R)-decomposition.
This yields (to our knowledge) a new kind of representation of
tropically convex sets extending the classical idea of representing
convex sets by means of extreme points and rays. We charac-
terize tropical hemispaces as tropically convex sets that admit a
(P , R)-decomposition of certain kind. In this characterization, with
each tropical hemispace we associate a matrix with coefficients
in the completed tropical semifield, satisfying an extended rank-
one condition. Our proof techniques are based on homogenization
(lifting a convex set to a cone), and the relation between tropical
hemispaces and semispaces.
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1. Introduction

Max-plus algebra is the algebraic structure obtained when considering the max-plus semifield
Rmax,+ . This semifield is defined as the set R ∪ {−∞} endowed with α ⊕ β := max(α,β) as addi-
tion and the usual real numbers addition α ⊗ β := α + β as multiplication. Thus, in the max-plus
semifield, the neutral elements for addition and multiplication are −∞ and 0 respectively.

The max-plus semifield is algebraically isomorphic to the max-times semifield Rmax,× , also known
as the max-prod semifield (see e.g. [23,24]), which is given by the set R+ = [0,+∞) endowed with
α ⊕ β := max(α,β) as addition and the usual real numbers product α ⊗ β := αβ as multiplication.
Consequently, in the max-times semifield, 0 is the neutral element for addition and 1 is the neutral
element for multiplication.

In this paper we consider both of these semifields at the same time, under the common notation T
and under the common name tropical algebra. In what follows T denotes either the max-plus semifield
Rmax,+ or the max-times semifield Rmax,× . We will use 0 to denote the neutral element for addition,
1 to denote the neutral element for multiplication, and T+ to denote the set of all invertible elements
with respect to the multiplication, i.e., all the elements of T different from 0.

The space Tn of n-dimensional vectors x = (x1, . . . , xn), endowed naturally with the component-
wise addition (also denoted by ⊕) and λx := (λ⊗ x1, . . . , λ⊗ xn) as the multiplication of a scalar λ ∈ T
by a vector x, is a semimodule over T. The vector (0, . . . ,0) ∈ Tn is also denoted by 0, and it is the
identity for ⊕.

In tropical convexity, one first defines the tropical segment joining the points x, y ∈ Tn as the set
{αx ⊕ β y ∈ Tn | α,β ∈ T, α ⊕ β = 1}, and then calls a set C ⊆ Tn tropically convex if it contains
the tropical segment joining any two of its points (see Fig. 1 below for an illustration of tropical
segments in dimension 2). Similarly, the notions of cone, halfspace, semispace, hemispace, convex hull,
linear span, convex and linear combination, can be transferred to the tropical setting (precise definitions
are given below). Henceforth all these terms used without precisions should always be understood in
the max-plus or max-times (i.e. tropical) sense.

The interest in this convexity (also known as max-plus convexity when T = Rmax,+ , or max-times
convexity or B-convexity when T =Rmax,×) comes from several fields, some of which we next review.
Convexity in Tn and in more general semimodules was introduced by Zimmermann [29] under the
name “extremal convexity” with applications e.g. to discrete optimization problems and it was stud-
ied by Maslov, Kolokoltsov, Litvinov, Shpiz and others as part of the Idempotent Analysis [17,19,22],
inspired by the fact that the solutions of a Hamilton–Jacobi equation associated with a deterministic
optimal control problem belong to structures similar to convex cones. Another motivation arises from
the algebraic approach to discrete event systems initiated by Cohen et al. [6], since the reachable and
observable spaces of certain timed discrete event systems are naturally equipped with structures of
cones of Tn (see e.g. Cohen et al. [7]). Motivated by tropical algebraic geometry and applications in
phylogenetic analysis, Develin and Sturmfels studied polyhedral convex sets in Tn thinking of them
as classical polyhedral complexes [10].

Many results that are part of classical convexity theory can be carried over to the setting of Tn:
separation of convex sets and projection operators (Gaubert and Sergeev [14]), minimization of dis-
tance and description of sets of best approximation (Akian et al. [1]), discrete convexity results such
as Minkowski theorem (Gaubert and Katz [11,12]), Helly, Carathéodory and Radon theorems (Briec
and Horvath [2]), colorful Carathéodory and Tverberg theorems (Gaubert and Meunier [13]), to quote
a few.

Here we investigate hemispaces in Tn , which are convex sets in Tn whose complements in Tn are
also convex. The definition of hemispaces makes sense in other structures once the notion of convex
set is defined. Hemispaces also appear in the literature under the name of halfspaces, convex half-
spaces, and generalized halfspaces. As general convex sets are quite complicated in many convexity
structures, a simple description of hemispaces is highly desirable. Usual hemispaces in Rn are de-
scribed by Lassak in [18]. Martínez-Legaz and Singer [20] give several geometric characterization of
usual hemispaces in Rn with the aid of linear operators and lexicographic order in Rn .

Hemispaces play a role in abstract convexity (see Singer [27], Van de Vel [28]), where they are used
in the Kakutani Theorem to separate two convex sets from each other. The proof of Kakutani Theorem
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