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1. Preliminaries and background

A long standing problem raised by S. Banach [2, p. 40] asks whether in every infinite-dimensional
Banach space there exists an unconditionally convergent series which fails to be absolutely conver-
gent. The positive solution, in 1950, due to A. Dvoretzky and C.A. Rogers [15], is probably the main
motivation for the appearance of the concept of absolutely summing operators in the 1950-1960s
with the works of A. Grothendieck [17], A. Pietsch [31] and J. Lindenstrauss and A. Pelczynski [21].

Essentially, if E and F are Banach spaces, an absolutely summing operator u : E — F is a lin-
ear operator that improves the convergence of series in the following fashion: each unconditionally
summable sequence (xp);2; in E is sent to an absolutely summable sequence (u(xs));2; in F. More
generally, if 1 < p < q < 00, a continuous linear operator u : E — F is absolutely (q; p)-summing if
(u(xj))j’il € £4(F) whenever
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o0
sup Z|g0(xj)|p < 00,
goeBE* j=1

where E* denotes the topological dual of E and Bg+ represents its closed unit ball (for the theory of
absolutely summing operators we refer to [12] and, for recent results, [9,13] and references therein).

The space of all absolutely (q; p)-summing operators from E to F is denoted by Ig.,(E; F) (or
ITy(E; F) if p=q). It is not difficult to prove that if 1 < p <q < oo, then IT, C I1y. Henceforth the
space of all bounded linear operators from a Banach space E to a Banach space F will be represented
by L(E; F).

The theory of absolutely summing operators is nowadays a mandatory topic in modern Banach
Space Theory, with somewhat unexpected applications. For example, using tools of the theory of
absolutely summing operators we can prove that if E =¢; or E =cp every normalized unconditional
basis is equivalent to the unit vector basis of E (see [21]). According to Pietsch [33, p. 365], one
of the most profound results in Banach Space Theory is Grothendieck’s theoréme fondamental de la
théorie métrique des produits tensoriels, from the famous Grothendieck’s Résumé [17] (see also [11] for
a modern approach), which can be rewritten in the language of absolutely summing operators as
follows:

Theorem 1.1 (Grothendieck). Every bounded linear operator from £1 to any Hilbert space is absolutely sum-
ming.

This kind of result, in the modern terminology, is called coincidence result. The notion of cotype
of a Banach space appeared in the 70s with works of J. Hoffmann-Jergensen [18], B. Maurey [24],
S. Kwapiefi [20], E. Dubinsky, A. Pelczynski, H.P. Rosenthal [14], among others. A Banach space E has
cotype s € [2, co) if there is a constant C > 0 so that, for all positive integer n and all x1,..., X, in E,

we have
2 1/2
dt) , (1.1)

n 1/s 1 n
(aninS) <c< [ non
i=1 o iz

where, for all i, r; represents the i-th Rademacher function. By cot E we denote the infimum of the
cotypes assumed by E, i.e.,

cot E :=inf{2 < q < oco; E has cotype q}.

It is important to recall that the infimum in the definition of cot E may not be achieved by E. The
straight relation between cotype and absolutely summing operators can be seen in numerous works.
For instance:

e (B. Maurey and G. Pisier [25]) If dim E = oo, then
cot E =inf{r: IT;,1(E; E) = L(E; E)}.

e (M. Talagrand [36,37]) A Banach space has cotype s > 2 if and only if
Il (E; E) = L(E; E)

and the result fails for s =2.
e (B. Maurey [24], L. Schwartz [35]) If F is an infinite-dimensional Banach space with cotype s > 2,
then

inf{r: I7,(C(K); F) = L(C(K); F)} =s (1.2)

and the infimum is not attained.
e (G. Botelho et al. [9]) If 2<r < cotF and dim E = dim F = oo, then

L(E,F)=T4:(E,F) = L(1,LcotF)=TIgr(1,LcotF). (1.3)
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