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We study frameworks in Euclidean space with a property of
invariance with respect to similarity transformations. By methods
of linear algebra, we address the problem of when a given graph
can be realized as an invariant framework in a Euclidean space of
dimension greater than or equal to three.
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1. Introduction

Gauss’ Fundamental Theorem of Axonometry affirms that the orthogonal projections into the complex
plane of the three vertices of a cube adjacent to a vertex situated at the origin have sum of squares
equal to zero. Conversely, any three complex numbers (not all zero) with sum of squares equal to
zero arise in this way [6].
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Consider a cube placed in R
3 and let ϕ : R3 → C be any orthogonal projection onto the complex

plane, for example ϕ(x1, x2, x3) = x1 + ix2. Let V be the collection of points in R
3 corresponding to

the vertex set of the cube. Then by Gauss’ fundamental theorem, ϕ satisfies the equation∑
y∼x

(
ϕ(y) − ϕ(x)

)2 = 0,

for each x ∈ V , where y ∼ x means that y is adjacent to x along an edge of the cube.
The above equation can be generalized to other regular polytopes [5]. For example, if z1, z2, . . . ,

zN+1 are the orthogonal projections to C of the vertices of a regular simplex in R
N , then

(z1 + · · · + zN+1)
2 = (N + 1)

(
z1

2 + · · · + zN+1
2).

Thus if V is the vertex set of a regular simplex in R
N and ϕ is the function that associates to each

element of V its value in the complex plane after an orthogonal projection, then ϕ satisfies the
equation:

1

N + 1

( ∑
y∼x

(
ϕ(y) − ϕ(x)

))2

=
∑
y∼x

(
ϕ(y) − ϕ(x)

)2
.

The same applies to all the regular polytopes, where the factor 1/(N + 1) is replaced by some other
constant.

The above equation is invariant under any similarity transformation of the simplex, in particular,
absolute position and size have no relevance. A question we can ask is to what extent the geometry
of the simplex is contained in the combinatorial relationship between the vertices of the underlying
graph and the coefficient 1/(N + 1) that occurs on the left-hand side of the equation.

Given a graph Γ = (V , E), with vertex set V and edge set E , together with a real-valued function
γ : V →R, consider the equation:

γ (x)

n(x)

( ∑
y∼x

(
ϕ(y) − ϕ(x)

))2

=
∑
y∼x

(
ϕ(x) − ϕ(y)

)2
, (1)

at each vertex x, where ϕ : V → C is a complex-valued function and n(x) is the degree of Γ at x (the
number of vertices adjacent to x). Solutions with γ ≡ 0 have been called holomorphic functions2 and
have been used to give a description of massless fields in a combinatorial setting [2]. Note that the
equations are invariant by the replacement of ϕ by ϕ̃ = λϕ + μ (λ,μ ∈C), as well as with respect to
complex conjugation ϕ �→ ϕ .

It is convenient to write �ϕ(x) = 1
n(x)

∑
y∼x(ϕ(y) − ϕ(x)) (the Laplacian) and (∇ϕ)2(x) =

1
n(x)

∑
y∼x(ϕ(y) − ϕ(x))2 (the symmetric square of the derivative), whereby Eq. (1) becomes

γ (x)�ϕ(x)2 = (∇ϕ)2(x). (2)

A framework (or body-bar framework)3 F in R
N is a pair (Γ, f ), where Γ = (V , E) is a finite

simple graph (i.e. one without loops or multiple edges) with vertex set V and edge set E , together
with a map f : V →R

N . We view the image of the vertices as a finite collection of points {�x1, . . . , �xn}
connected by edges which are straight line segments. By abuse of notation, we shall identify a vertex
x ∈ V with its image under f and write F = (V , E). We wish to realize a graph as a framework in
Euclidean space so that the induced geometry is implicit in the combinatorial structure, rather than
being dependent on the embedding.

2 A notion of holomorphic function somewhat similar to this has been introduced by S. Barré [3]; however, in addition to (1)
with γ ≡ 0, Barré requires that ϕ be harmonic.

3 The term bar-joint framework is often used with the added condition that each bar has positive length. Body-bar frame-
works are a special class of bar-joint frameworks.
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