Structures and numerical ranges of power partial isometries

Hwa-Long Gau ${ }^{\mathrm{a}, *, 1}$, Pei Yuan Wu ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Department of Mathematics, National Central University, Chung-Li 32001, Taiwan, ROC
${ }^{\text {b }}$ Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC

ARTICLE INFO

Article history:

Received 10 October 2013
Accepted 12 November 2013
Available online 20 November 2013
Submitted by C.-K. Li

MSC:

15A99
15A60

Keywords:

Partial isometry
Power partial isometry
Numerical range
S_{n}-matrix
Jordan block

Abstract

We derive a matrix model, under unitary similarity, of an n-by- n matrix A such that $A, A^{2}, \ldots, A^{k}(k \geqslant 1)$ are all partial isometries, which generalizes the known fact that if A is a partial isometry, then it is unitarily similar to a matrix of the form $\left[\begin{array}{ll}0 & B \\ 0 & C\end{array}\right]$ with $B^{*} B+C^{*} C=I$. Using this model, we show that if A has ascent k and $A, A^{2}, \ldots, A^{k-1}$ are partial isometries, then the numerical range $W(A)$ of A is a circular disc centered at the origin if and only if A is unitarily similar to a direct sum of Jordan blocks whose largest size is k. As an application, this yields that, for any S_{n}-matrix $A, W(A)$ (resp., $W(A \otimes A)$) is a circular disc centered at the origin if and only if A is unitarily similar to the Jordan block J_{n}. Finally, examples are given to show that, for a general matrix A, the conditions that $W(A)$ and $W(A \otimes A)$ are circular discs at 0 are independent of each other.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

An n-by- n complex matrix A is a partial isometry if $\|A x\|=\|x\|$ for any vector x in the orthogonal complement $(\operatorname{ker} A)^{\perp}$ in \mathbb{C}^{n} of the kernel of A, where $\|\cdot\|$ denotes the standard norm in \mathbb{C}^{n}. The study of such matrices or, more generally, such operators on a Hilbert space dates back to 1962 [7]. Their general properties have since been summarized in [6, Chapter 15].

[^0]In this paper, we study matrices A such that, for some $k \geqslant 1$, the powers A, A^{2}, \ldots, A^{k} are all partial isometries. In Section 2 below, we derive matrix models, under unitary similarity, of such a matrix (Theorems 2.2 and 2.4). They are generalizations of the known fact that A is a partial isometry if and only if it is unitarily similar to a matrix of the form $\left[\begin{array}{ll}0 & B \\ 0 & C\end{array}\right]$ with $B^{*} B+C^{*} C=I$ (Lemma 2.1).

Recall that the ascent of a matrix, denoted by $a(A)$, is the smallest integer $k \geqslant 0$ for which $\operatorname{ker} A^{k}=$ $\operatorname{ker} A^{k+1}$. It is easily seen that $a(A)$ is equal to the size of the largest Jordan block associated with the eigenvalue 0 in the Jordan form of A. We denote the n-by-n Jordan block

$$
\left[\begin{array}{llll}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right]
$$

by J_{n}. The numerical range $W(A)$ of A is the subset $\left\{\langle A x, x\rangle: x \in \mathbb{C}^{n},\|x\|=1\right\}$ of the complex plane \mathbb{C}, where $\langle\cdot, \cdot\rangle$ is the standard inner product in \mathbb{C}^{n}. It is known that $W(A)$ is a nonempty compact convex subset, and $W\left(J_{n}\right)=\{z \in \mathbb{C}:|z| \leqslant \cos (\pi /(n+1))\}$ (cf. [5, Proposition 1]). For other properties of the numerical range, the readers may consult [6, Chapter 22] or [10, Chapter 1].

Using the matrix model for power partial isometries, we show that if $a(A)=k \geqslant 2$ and $A, A^{2}, \ldots, A^{k-1}$ are all partial isometries, then the following are equivalent: (a) $W(A)$ is a circular disc centered at the origin, (b) A is unitarily similar to a direct sum $J_{k_{1}} \oplus J_{k_{2}} \oplus \cdots \oplus J_{k_{\ell}}$ with $k=k_{1} \geqslant k_{2} \geqslant \cdots \geqslant k_{\ell} \geqslant 1$, and (c) A has no unitary part and A^{j} is a partial isometry for all $j \geqslant 1$ (Theorem 2.6). An example is given, which shows that the number " $k-1$ " in the above assumption is sharp (Example 2.7).

In Section 3, we consider the class of S_{n}-matrices. Recall that an n-by- n matrix A is of class S_{n} if A is a contraction $\left(\|A\| \equiv \max \left\{\|A x\|: x \in \mathbb{C}^{n},\|x\|=1\right\} \leqslant 1\right.$), its eigenvalues are all in \mathbb{D} $(\equiv\{z \in \mathbb{C}:|z|<1\})$, and it satisfies $\operatorname{rank}\left(I_{n}-A^{*} A\right)=1$. Such matrices are the finite-dimensional versions of the compression of the shift $S(\phi)$, first studied by Sarason [11]. They also feature prominently in the Sz.-Nagy-Foiaş contraction theory [12]. It turns out that a hitherto unnoticed property of such matrices is that if A is of class S_{n} and k is its ascent, then A, A^{2}, \ldots, A^{k} are all partial isometries. Thus the structure theorems in Section 2 are applicable to A or even to $A \otimes A$, the tensor product of A with itself. As a consequence, we obtain that, for an S_{n}-matrix A, the numerical range $W(A)$ (resp., $W(A \otimes A))$ is a circular disc centered at the origin if and only if A is unitarily similar to the Jordan block J_{n} (Theorem 3.3). The assertion concerning $W(A)$ is known before (cf. [13, Lemma 5]). Finally, we give examples to show that if A is a general matrix, then the conditions for the circularity (at the origin) of $W(A)$ and $W(A \otimes A)$ are independent of each other (Examples 3.5 and 3.6).

We use I_{n} and 0_{n} to denote the n-by- n identity and zero matrices, respectively. An identity or zero matrix with unspecified size is simply denoted by I or 0 . For an n-by-n matrix A, nullity A is used for $\operatorname{dim} \operatorname{ker} A$, and rank A for its rank. The real part of A is $\operatorname{Re} A=\left(A+A^{*}\right) / 2$. The geometric and algebraic multiplicities of an eigenvalue λ of A are nullity $\left(A-\lambda I_{n}\right)$ and the multiplicity of the zero λ in the characteristic polynomial $\operatorname{det}\left(z I_{n}-A\right)$ of A, respectively. Note that $a(A)$ equals the smallest integer $k \geqslant 0$ for which the geometric and algebraic multiplicities of the eigenvalue 0 of A^{k} coincide. An n-by-n diagonal matrix with diagonal entries a_{1}, \ldots, a_{n} is denoted by $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$.

2. Power partial isometries

We start with the following characterizations of partial isometries.
Lemma 2.1. The following conditions are equivalent for an n-by-n matrix A :
(a) A is a partial isometry,
(b) $A^{*} A$ is an (orthogonal) projection, and
(c) A is unitarily similar to a matrix of the form $\left[\begin{array}{ll}0 & B \\ 0 & C\end{array}\right]$ with $B^{*} B+C^{*} C=I$.

In this case, $\left[\begin{array}{ll}0 & B \\ 0 & C\end{array}\right]$ acts on $\mathbb{C}^{n}=\operatorname{ker} A \oplus(\operatorname{ker} A)^{\perp}$.

https://daneshyari.com/en/article/6416474

Download Persian Version:

https://daneshyari.com/article/6416474

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hlgau@math.ncu.edu.tw (H.-L. Gau), pywu@math.nctu.edu.tw (P.Y. Wu).
 1 Research supported by the National Science Council of the Republic of China under NSC-102-2115-M-008-007.
 2 Research supported by the National Science Council of the Republic of China under NSC-102-2115-M-009-007 and by the MOE-ATU project.

