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We derive a matrix model, under unitary similarity, of an n-by-n
matrix A such that A, A2, . . . , Ak (k � 1) are all partial isometries,
which generalizes the known fact that if A is a partial isometry,

then it is unitarily similar to a matrix of the form
[

0 B

0 C

]
with

B∗ B + C∗C = I . Using this model, we show that if A has ascent
k and A, A2, . . . , Ak−1 are partial isometries, then the numerical
range W (A) of A is a circular disc centered at the origin if and
only if A is unitarily similar to a direct sum of Jordan blocks
whose largest size is k. As an application, this yields that, for any
Sn-matrix A, W (A) (resp., W (A ⊗ A)) is a circular disc centered at
the origin if and only if A is unitarily similar to the Jordan block Jn .
Finally, examples are given to show that, for a general matrix A,
the conditions that W (A) and W (A ⊗ A) are circular discs at 0 are
independent of each other.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

An n-by-n complex matrix A is a partial isometry if ‖Ax‖ = ‖x‖ for any vector x in the orthogonal
complement (ker A)⊥ in C

n of the kernel of A, where ‖ · ‖ denotes the standard norm in C
n . The

study of such matrices or, more generally, such operators on a Hilbert space dates back to 1962 [7].
Their general properties have since been summarized in [6, Chapter 15].
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In this paper, we study matrices A such that, for some k � 1, the powers A, A2, . . . , Ak are all
partial isometries. In Section 2 below, we derive matrix models, under unitary similarity, of such a
matrix (Theorems 2.2 and 2.4). They are generalizations of the known fact that A is a partial isometry

if and only if it is unitarily similar to a matrix of the form
[

0 B
0 C

]
with B∗B + C∗C = I (Lemma 2.1).

Recall that the ascent of a matrix, denoted by a(A), is the smallest integer k � 0 for which ker Ak =
ker Ak+1. It is easily seen that a(A) is equal to the size of the largest Jordan block associated with the
eigenvalue 0 in the Jordan form of A. We denote the n-by-n Jordan block⎡

⎢⎢⎢⎣
0 1

0
. . .
. . . 1

0

⎤
⎥⎥⎥⎦

by Jn . The numerical range W (A) of A is the subset {〈Ax, x〉: x ∈ C
n, ‖x‖ = 1} of the complex plane C,

where 〈·, ·〉 is the standard inner product in C
n . It is known that W (A) is a nonempty compact convex

subset, and W ( Jn) = {z ∈ C: |z| � cos(π/(n + 1))} (cf. [5, Proposition 1]). For other properties of the
numerical range, the readers may consult [6, Chapter 22] or [10, Chapter 1].

Using the matrix model for power partial isometries, we show that if a(A) = k � 2 and
A, A2, . . . , Ak−1 are all partial isometries, then the following are equivalent: (a) W (A) is a circu-
lar disc centered at the origin, (b) A is unitarily similar to a direct sum Jk1 ⊕ Jk2 ⊕ · · · ⊕ Jk�

with
k = k1 � k2 � · · · � k� � 1, and (c) A has no unitary part and A j is a partial isometry for all j � 1
(Theorem 2.6). An example is given, which shows that the number “k − 1” in the above assumption
is sharp (Example 2.7).

In Section 3, we consider the class of Sn-matrices. Recall that an n-by-n matrix A is of class
Sn if A is a contraction (‖A‖ ≡ max{‖Ax‖: x ∈ C

n, ‖x‖ = 1} � 1), its eigenvalues are all in D

(≡ {z ∈ C: |z| < 1}), and it satisfies rank(In − A∗ A) = 1. Such matrices are the finite-dimensional ver-
sions of the compression of the shift S(φ), first studied by Sarason [11]. They also feature prominently
in the Sz.-Nagy–Foiaş contraction theory [12]. It turns out that a hitherto unnoticed property of such
matrices is that if A is of class Sn and k is its ascent, then A, A2, . . . , Ak are all partial isometries.
Thus the structure theorems in Section 2 are applicable to A or even to A ⊗ A, the tensor product of
A with itself. As a consequence, we obtain that, for an Sn-matrix A, the numerical range W (A) (resp.,
W (A ⊗ A)) is a circular disc centered at the origin if and only if A is unitarily similar to the Jordan
block Jn (Theorem 3.3). The assertion concerning W (A) is known before (cf. [13, Lemma 5]). Finally,
we give examples to show that if A is a general matrix, then the conditions for the circularity (at the
origin) of W (A) and W (A ⊗ A) are independent of each other (Examples 3.5 and 3.6).

We use In and 0n to denote the n-by-n identity and zero matrices, respectively. An identity or
zero matrix with unspecified size is simply denoted by I or 0. For an n-by-n matrix A, nullity A is
used for dim ker A, and rank A for its rank. The real part of A is Re A = (A + A∗)/2. The geometric and
algebraic multiplicities of an eigenvalue λ of A are nullity(A − λIn) and the multiplicity of the zero
λ in the characteristic polynomial det(zIn − A) of A, respectively. Note that a(A) equals the smallest
integer k � 0 for which the geometric and algebraic multiplicities of the eigenvalue 0 of Ak coincide.
An n-by-n diagonal matrix with diagonal entries a1, . . . ,an is denoted by diag(a1, . . . ,an).

2. Power partial isometries

We start with the following characterizations of partial isometries.

Lemma 2.1. The following conditions are equivalent for an n-by-n matrix A:

(a) A is a partial isometry,
(b) A∗ A is an (orthogonal) projection, and

(c) A is unitarily similar to a matrix of the form
[

0 B
0 C

]
with B∗B + C∗C = I .

In this case,
[

0 B
0 C

]
acts on C

n = ker A ⊕ (ker A)⊥ .
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