

Structures and numerical ranges of power partial isometries

Hwa-Long Gau^{a,*,1}, Pei Yuan Wu^{b,2}

^a Department of Mathematics, National Central University, Chung-Li 32001, Taiwan, ROC
^b Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC

ARTICLE INFO

Article history: Received 10 October 2013 Accepted 12 November 2013 Available online 20 November 2013 Submitted by C.-K. Li

MSC: 15A99 15A60

Keywords: Partial isometry Power partial isometry Numerical range S_n-matrix Jordan block

ABSTRACT

We derive a matrix model, under unitary similarity, of an *n*-by-*n* matrix *A* such that *A*, A^2, \ldots, A^k ($k \ge 1$) are all partial isometries, which generalizes the known fact that if *A* is a partial isometry, then it is unitarily similar to a matrix of the form $\begin{bmatrix} 0 & B \\ 0 & C \end{bmatrix}$ with $B^*B + C^*C = I$. Using this model, we show that if *A* has ascent *k* and *A*, A^2, \ldots, A^{k-1} are partial isometries, then the numerical range *W*(*A*) of *A* is a circular disc centered at the origin if and only if *A* is unitarily similar to a direct sum of Jordan blocks whose largest size is *k*. As an application, this yields that, for any S_n -matrix *A*, *W*(*A*) (resp., *W*(*A* \otimes *A*)) is a circular disc centered at the origin if and only if *A* is unitarily similar to the Jordan block J_n . Finally, examples are given to show that, for a general matrix *A*, the conditions that *W*(*A*) and *W*(*A* \otimes *A*) are circular discs at 0 are independent of each other.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

An *n*-by-*n* complex matrix *A* is a *partial isometry* if ||Ax|| = ||x|| for any vector *x* in the orthogonal complement (ker *A*)^{\perp} in \mathbb{C}^n of the kernel of *A*, where $|| \cdot ||$ denotes the standard norm in \mathbb{C}^n . The study of such matrices or, more generally, such operators on a Hilbert space dates back to 1962 [7]. Their general properties have since been summarized in [6, Chapter 15].

* Corresponding author.

E-mail addresses: hlgau@math.ncu.edu.tw (H.-L. Gau), pywu@math.nctu.edu.tw (P.Y. Wu).

¹ Research supported by the National Science Council of the Republic of China under NSC-102-2115-M-008-007.

² Research supported by the National Science Council of the Republic of China under NSC-102-2115-M-009-007 and by the MOE-ATU project.

In this paper, we study matrices *A* such that, for some $k \ge 1$, the powers *A*, A^2 ,..., A^k are all partial isometries. In Section 2 below, we derive matrix models, under unitary similarity, of such a matrix (Theorems 2.2 and 2.4). They are generalizations of the known fact that *A* is a partial isometry if and only if it is unitarily similar to a matrix of the form $\begin{bmatrix} 0 & B \\ 0 & C \end{bmatrix}$ with $B^*B + C^*C = I$ (Lemma 2.1).

Recall that the *ascent* of a matrix, denoted by a(A), is the smallest integer $k \ge 0$ for which ker $A^k = \ker A^{k+1}$. It is easily seen that a(A) is equal to the size of the largest Jordan block associated with the eigenvalue 0 in the Jordan form of A. We denote the *n*-by-*n* Jordan block

٢0	1		٦	
	0	·.		
		·	1	
L			0	

by J_n . The *numerical range* W(A) of A is the subset { $\langle Ax, x \rangle$: $x \in \mathbb{C}^n$, ||x|| = 1} of the complex plane \mathbb{C} , where $\langle \cdot, \cdot \rangle$ is the standard inner product in \mathbb{C}^n . It is known that W(A) is a nonempty compact convex subset, and $W(J_n) = \{z \in \mathbb{C}: |z| \leq \cos(\pi/(n+1))\}$ (cf. [5, Proposition 1]). For other properties of the numerical range, the readers may consult [6, Chapter 22] or [10, Chapter 1].

Using the matrix model for power partial isometries, we show that if $a(A) = k \ge 2$ and A, A^2, \ldots, A^{k-1} are all partial isometries, then the following are equivalent: (a) W(A) is a circular disc centered at the origin, (b) A is unitarily similar to a direct sum $J_{k_1} \oplus J_{k_2} \oplus \cdots \oplus J_{k_\ell}$ with $k = k_1 \ge k_2 \ge \cdots \ge k_\ell \ge 1$, and (c) A has no unitary part and A^j is a partial isometry for all $j \ge 1$ (Theorem 2.6). An example is given, which shows that the number "k - 1" in the above assumption is sharp (Example 2.7).

In Section 3, we consider the class of S_n -matrices. Recall that an *n*-by-*n* matrix *A* is of *class* S_n if *A* is a contraction ($||A|| \equiv \max\{||Ax||: x \in \mathbb{C}^n, ||x|| = 1\} \leq 1$), its eigenvalues are all in \mathbb{D} ($\equiv \{z \in \mathbb{C}: |z| < 1\}$), and it satisfies $\operatorname{rank}(I_n - A^*A) = 1$. Such matrices are the finite-dimensional versions of the *compression of the shift* $S(\phi)$, first studied by Sarason [11]. They also feature prominently in the Sz.-Nagy–Foiaş contraction theory [12]. It turns out that a hitherto unnoticed property of such matrices is that if *A* is of class S_n and *k* is its ascent, then A, A^2, \ldots, A^k are all partial isometries. Thus the structure theorems in Section 2 are applicable to *A* or even to $A \otimes A$, the tensor product of *A* with itself. As a consequence, we obtain that, for an S_n -matrix *A*, the numerical range W(A) (resp., $W(A \otimes A)$) is a circular disc centered at the origin if and only if *A* is unitarily similar to the Jordan block J_n (Theorem 3.3). The assertion concerning W(A) is known before (cf. [13, Lemma 5]). Finally, we give examples to show that if *A* is a general matrix, then the conditions for the circularity (at the origin) of W(A) and $W(A \otimes A)$ are independent of each other (Examples 3.5 and 3.6).

We use I_n and 0_n to denote the *n*-by-*n* identity and zero matrices, respectively. An identity or zero matrix with unspecified size is simply denoted by *I* or 0. For an *n*-by-*n* matrix *A*, nullity *A* is used for dim ker *A*, and rank *A* for its rank. The *real part* of *A* is Re $A = (A + A^*)/2$. The *geometric* and *algebraic multiplicities* of an eigenvalue λ of *A* are nullity $(A - \lambda I_n)$ and the multiplicity of the zero λ in the characteristic polynomial det $(zI_n - A)$ of *A*, respectively. Note that a(A) equals the smallest integer $k \ge 0$ for which the geometric and algebraic multiplicities of the eigenvalue 0 of A^k coincide. An *n*-by-*n* diagonal matrix with diagonal entries a_1, \ldots, a_n is denoted by diag (a_1, \ldots, a_n) .

2. Power partial isometries

We start with the following characterizations of partial isometries.

Lemma 2.1. The following conditions are equivalent for an n-by-n matrix A:

- (a) A is a partial isometry,
- (b) A^*A is an (orthogonal) projection, and
- (c) A is unitarily similar to a matrix of the form $\begin{bmatrix} 0 & B \\ 0 & C \end{bmatrix}$ with $B^*B + C^*C = I$.

In this case, $\begin{bmatrix} 0 & B \\ 0 & C \end{bmatrix}$ acts on $\mathbb{C}^n = \ker A \oplus (\ker A)^{\perp}$.

Download English Version:

https://daneshyari.com/en/article/6416474

Download Persian Version:

https://daneshyari.com/article/6416474

Daneshyari.com