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1. Introduction

An n-by-n complex matrix A is a partial isometry if ||Ax| = ||x|| for any vector x in the orthogonal
complement (ker A)L in C" of the kernel of A, where || - || denotes the standard norm in C". The
study of such matrices or, more generally, such operators on a Hilbert space dates back to 1962 [7].
Their general properties have since been summarized in [6, Chapter 15].
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In this paper, we study matrices A such that, for some k > 1, the powers A, A%, ..., AK are all

partial isometries. In Section 2 below, we derive matrix models, under unitary similarity, of such a
matrix (Theorems 2.2 and 2.4). They are generalizations of the known fact that A is a partial isometry

g?] with B*B 4+ C*C = I (Lemma 2.1).

Recall that the ascent of a matrix, denoted by a(A), is the smallest integer k > 0 for which ker AK =
ker A¥*1_ 1t is easily seen that a(A) is equal to the size of the largest Jordan block associated with the
eigenvalue 0 in the Jordan form of A. We denote the n-by-n Jordan block

01
0

if and only if it is unitarily similar to a matrix of the form [

1
0

by Jn. The numerical range W (A) of A is the subset {(Ax, x): x € C", ||x|| = 1} of the complex plane C,
where (-, -) is the standard inner product in C". It is known that W (A) is a nonempty compact convex
subset, and W (J,) ={ze C: |z] < cos(r/(n+ 1))} (cf. [5, Proposition 1]). For other properties of the
numerical range, the readers may consult [6, Chapter 22] or [10, Chapter 1].

Using the matrix model for power partial isometries, we show that if a(A) =k > 2 and
A, A2 ... Ak=1 are all partial isometries, then the following are equivalent: (a) W (A) is a circu-
lar disc centered at the origin, (b) A is unitarily similar to a direct sum Ji, @ Ji, ® -+ ® Ji, with
k=ky 2ky>--->ke >1, and (c) A has no unitary part and A’ is a partial isometry for all j > 1
(Theorem 2.6). An example is given, which shows that the number “k — 1” in the above assumption
is sharp (Example 2.7).

In Section 3, we consider the class of S,;-matrices. Recall that an n-by-n matrix A is of class
Sp if A is a contraction (||A|| = max{||Ax|: x € C", ||x|| = 1} < 1), its eigenvalues are all in D
(={zeC: |z] < 1}), and it satisfies rank(I;, — A*A) = 1. Such matrices are the finite-dimensional ver-
sions of the compression of the shift S(¢), first studied by Sarason [11]. They also feature prominently
in the Sz.-Nagy-Foias contraction theory [12]. It turns out that a hitherto unnoticed property of such
matrices is that if A is of class S, and k is its ascent, then A, A2,...,A" are all partial isometries.
Thus the structure theorems in Section 2 are applicable to A or even to A ® A, the tensor product of
A with itself. As a consequence, we obtain that, for an S,-matrix A, the numerical range W (A) (resp.,
W (A ® A)) is a circular disc centered at the origin if and only if A is unitarily similar to the Jordan
block J, (Theorem 3.3). The assertion concerning W (A) is known before (cf. [13, Lemma 5]). Finally,
we give examples to show that if A is a general matrix, then the conditions for the circularity (at the
origin) of W (A) and W(A ® A) are independent of each other (Examples 3.5 and 3.6).

We use I, and 0, to denote the n-by-n identity and zero matrices, respectively. An identity or
zero matrix with unspecified size is simply denoted by I or 0. For an n-by-n matrix A, nullity A is
used for dimker A, and rank A for its rank. The real part of A is Re A = (A + A*)/2. The geometric and
algebraic multiplicities of an eigenvalue A of A are nullity(A — AI,;) and the multiplicity of the zero
A in the characteristic polynomial det(zl, — A) of A, respectively. Note that a(A) equals the smallest
integer k > 0 for which the geometric and algebraic multiplicities of the eigenvalue 0 of A¥ coincide.
An n-by-n diagonal matrix with diagonal entries ay, ..., a, is denoted by diag(ay, ..., an).

2. Power partial isometries
We start with the following characterizations of partial isometries.
Lemma 2.1. The following conditions are equivalent for an n-by-n matrix A:

(a) Ais a partial isometry,
(b) A*A is an (orthogonal) projection, and
(c) A is unitarily similar to a matrix of the form [g g] with B*B+ C*C=1.

In this case, [8 g] actson C" = ker A @ (ker A)*L.
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