Diagonals and numerical ranges of direct sums of matrices

Hsin-Yi Lee ${ }^{1}$
Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC

A R T I C L E I N F O

Article history:

Received 4 March 2013
Accepted 13 July 2013
Available online 1 August 2013
Submitted by L. Rodman

MSC:

15A60

Keywords:
Numerical range
Direct sum
Compression

Abstract

For any n-by- n matrix A, we consider the maximum number $k=$ $k(A)$ for which there is a k-by- k compression of A with all its diagonal entries in the boundary $\partial W(A)$ of the numerical range $W(A)$ of A. If A is a normal or a quadratic matrix, then the exact value of $k(A)$ can be computed. For a matrix A of the form $B \oplus C$, we show that $k(A)=2$ if and only if the numerical range of one summand, say, B is contained in the interior of the numerical range of the other summand C and $k(C)=2$. For an irreducible matrix A, we can determine exactly when the value of $k(A)$ equals the size of A. These are then applied to determine $k(A)$ for a reducible matrix A of size 4 in terms of the shape of $W(A)$.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let A be an n-by- n complex matrix. Its numerical range $W(A)$ is, by definition, the set $\left\{\langle A x, x\rangle: x \in \mathbb{C}^{n},\|x\|=1\right\}$, where $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ denote the standard inner product and its associated norm in \mathbb{C}^{n}, respectively. It is well known that $W(A)$ is a nonempty compact convex subset of the complex plane. For other properties of the numerical range, we refer the reader to [4, Chapter 1]. Let $k(A)$ be the maximum number k of orthonormal vectors $x_{1}, \ldots, x_{n} \in \mathbb{C}^{n}$ with $\left\langle A x_{j}, x_{j}\right\rangle$ in the boundary $\partial W(A)$ of $W(A)$ for all j. Note that $k(A)$ is also the maximum size of a compression of A with all its diagonal entries in $\partial W(A)$. Recall that a k-by- k matrix B is a compression of A if $B=V^{*} A V$ for some n-by- k matrix V with $V^{*} V=I_{k}$. In particular, if n equals k, then A and B are said to be unitarily similar, which we denote by $A \cong B$. The number $k(A)$ was introduced in [3] and [7]. It relates properties of the numerical range to the compressions of A. In particular, it was shown in

[^0][3, Lemma 4.1 and Theorem 4.4] that $2 \leqslant k(A) \leqslant n$ for any n-by- $n(n \geqslant 2)$ matrix A, and $k(A)=\lceil n / 2\rceil$ for any S_{n} matrix $A(n \geqslant 3)$. Recall that an n-by- n matrix A is of class S_{n} if it is a contraction, that is, $\|A\| \equiv \max _{\|x\|=1}\|A x\| \leqslant 1$, its eigenvalues are all in the open unit disc $\mathbb{D} \equiv\{z \in \mathbb{C}:|z| \leqslant 1\}$, and the rank of $I_{n}-A^{*} A$ equals one. In [7, Theorem 3.1], it was proven that $k(A)=n$ for an n-by- $n(n \geqslant 2$) weighted shift matrix A with weights w_{1}, \ldots, w_{n} if and only if either $\left|w_{1}\right|=\cdots=\left|w_{n}\right|$ or n is even and $\left|w_{1}\right|=\left|w_{3}\right|=\cdots=\left|w_{n-1}\right|$ and $\left|w_{2}\right|=\left|w_{4}\right|=\cdots=\left|w_{n}\right|$. Recall that an n-by- $n(n \geqslant 2)$ matrix of the form
\[

\left[$$
\begin{array}{cccc}
0 & w_{1} & & \\
& 0 & \ddots & \\
& & \ddots & w_{n-1} \\
w_{n} & & & 0
\end{array}
$$\right]
\]

is called a weighted shift matrix with weights w_{1}, \ldots, w_{n}.
In Section 2 below, we first determine the value of $k(A)$ for a normal matrix A (Proposition 2.1). Then we consider the direct sum $A=B \oplus C$, where the numerical ranges $W(B)$ and $W(C)$ are assumed to be disjoint. In this case, we show that the value of $k(A)$ is equal to the sum of $k_{1}(B)$ and $k_{1}(C)$ (Theorem 2.2), where $k_{1}(B)$ and $k_{1}(C)$ are defined as follows. We define $k_{1}(B)$ to be the maximum number k for which there are orthonormal vectors x_{1}, \ldots, x_{k} in \mathbb{C}^{n} such that $\left\langle B x_{i}, x_{i}\right\rangle$ is in $\partial W(A) \cap \partial W(B)$ for all $i=1, \ldots, k$, and similarly for $k_{1}(C)$. Based on the proof of Theorem 2.2, we obtain the same formula for $k(A)$ under a slightly weaker condition on B and C (Theorem 2.4). In Section 3, we give some applications of Theorem 2.4. The first one (Proposition 3.1) shows that the equality $k(A)=k_{1}(B)+k_{1}(C)$ holds for a matrix A of the form $B \oplus C$ with normal C. In particular, we are able to determine the value of $k(A)$ for any 4 -by-4 reducible matrix A (Corollary 3.4 and Propositions 3.7-3.9). Moreover, the number $k\left(A \oplus\left(A+a I_{n}\right)\right)$ can be determined for any n-by- n matrix A and nonzero complex number a (Proposition 3.10). At the end of Section 3, we propose several open questions on $k(B \oplus C)$ and give a partial answer for one of them (Proposition 3.11). That is, the equality $k\left(\bigoplus_{j=1}^{m} A\right)=m \cdot k(A)$ holds if the dimension of $H_{\xi}(A)$ equals one for each $\xi \in \partial W(A)$, where the subspace $H_{\xi}(A)$ is defined in the first paragraph of Section 2. By using this, we can determine the value of $k(A)$ for a quadratic matrix A (Corollary 3.12). Recall that a quadratic matrix A is one which satisfies $A^{2}+z_{1} A+z_{2} I=0$ for some scalars z_{1} and z_{2}.

We end this section by fixing some notation. For any finite square matrix A, we use $\operatorname{Re} A=$ $\left(A+A^{*}\right) / 2$ and $\operatorname{Im} A=\left(A-A^{*}\right) /(2 i)$ to denote its real and imaginary parts, respectively. The set of eigenvalues of A is denoted by $\sigma(A)$. A is called positive definite, denoted by $A>0$, if A is Hermitian and $\langle A x, x\rangle>0$ for all $x \neq 0$. I_{n} is the n-by-n identity matrix. The n-by-n diagonal matrix with diagonals ξ_{1}, \ldots, ξ_{n} is denoted by $\operatorname{diag}\left(\xi_{1}, \ldots, \xi_{n}\right)$. The cardinal number of a set S is \#(S). The notation $\delta_{i j}$ is the Kronecker delta, i.e., $\delta_{i j}$ has the value 1 if $i=j$, and the value 0 if otherwise. The span of a nonempty subset S of a vector space V, denoted by span(S), is the subspace consisting of all linear combinations of the vectors in S.

2. Direct sum

We start by reviewing a few basic facts concerning the boundary points of a numerical range. For an n-by-n matrix A, a point ξ in $\partial W(A)$ and a supporting line L of $W(A)$ which passes through ξ, there is a θ in $[0,2 \pi)$ such that the ray from the origin which forms angle θ from the positive x-axis is perpendicular to L. In this case, $\operatorname{Re}\left(e^{-i \theta} \xi\right)$ is the maximum eigenvalue of $\operatorname{Re}\left(e^{-i \theta} A\right)$ with the corresponding eigenspace $E_{\xi, L}(A) \equiv \operatorname{ker} \operatorname{Re}\left(e^{-i \theta}\left(A-\xi I_{n}\right)\right.$). Let $K_{\xi}(A)$ denote the set $\left\{x \in \mathbb{C}^{n}:\langle A x, x\rangle=\right.$ $\left.\xi\|x\|^{2}\right\}$ and $H_{\xi}(A)$ the subspace spanned by $K_{\xi}(A)$. If the matrix A is clear from the context, we will abbreviate these to $E_{\xi, L}, K_{\xi}$ and H_{ξ}, respectively. For other related properties, we refer the reader to [2, Theorem 1] and [7, Proposition 2.2]. The next proposition on the value of $k(A)$ for a normal matrix A is an easy consequence of [7, Lemma 2.9]. It can be regarded as a motivation for our study of this topic.

https://daneshyari.com/en/article/6416493

Download Persian Version:

https://daneshyari.com/article/6416493

Daneshyari.com

[^0]: E-mail address: hylee.am95g@nctu.edu.tw.
 1 The contents of this paper form a part of the author's Ph.D. dissertation at National Chiao Tung University under the supervision of Pei Yuan Wu. The author is grateful to the latter for the guidance and support provided over the years to have this work accomplished.

