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We derive necessary and sufficient conditions for guaranteeing
the nonsingularity of a block two-by-two matrix by making use
of the singular value decompositions and the Moore-Penrose
pseudoinverses of the matrix blocks. These conditions are complete,
and much weaker and simpler than those given by Decker and
Keller [D.W. Decker, H.B. Keller, Multiple limit point bifurcation,
J. Math. Anal. Appl. 75 (1980) 417-430], and may be more easily
examined than those given by Bai [Z.-Z. Bai, Eigenvalue estimates
for saddle point matrices of Hermitian and indefinite leading
blocks, ]. Comput. Appl. Math. 237 (2013) 295-306] from the
computational viewpoint. We also derive general formulas for
the rank of the block two-by-two matrix by utilizing either the
unitarily compressed or the orthogonally projected sub-matrices.
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1. Introduction

We discuss conditions that guarantee the nonsingularity of block two-by-two matrices of the form

A B
M:[C D], (1.1)

and derive general formulas for the rank of the matrix M, where A € C™*™, B € C™*", C € C"™*™ and
D € C™" are complex matrices. It is obvious that, under suitable partitioning, any matrix can be cast
in the form (1.1).

Matrices of block two-by-two structures include as special cases the standard and the generalized
saddle-point matrices [3,4,31,9] and the skew-Hamiltonian matrices [23,27]. They frequently arise
from stability and bifurcation theory of ordinary differential equations [16,17,19,11], order-reduction
and sinc discretization of the third-order linear ordinary differential equations [26,7], domain de-
composition methods of partial differential equations [10,28,29,4], finite-element discretization and
first-order linearization of the two-phase flow problems based on Cahn-Hilliard equation [14,2,13],
finite-element discretizations of PDE-constrained optimization problems [21,25,6], real equivalent for-
mulations of complex linear systems [1,6], linear and Hy, control problems [20,23,24,34,27], matrix
completions [15,22,32,33], and so on.

One of the fundamental and important problems is how to examine the nonsingularity or, in gen-
eral, how to determine the rank of the matrix M. When A is positive semidefinite, D is Hermitian
positive semidefinite, and C = —B* have full rank, i.e., the matrix M is of the generalized saddle-point
form, from [12, Theorem 3.4] we know that if

null(#(A)) Nnull(B*) = {0},

then M is nonsingular; and if M is nonsingular, then

null(A) N null(B*) = {0}.

Note that the converses of the above conditions do not hold in general, so they are only either suffi-
cient or necessary. Here the matrix A is said to be positive definite (or semidefinite) if its Hermitian
part H(A) = %(A + A*) is Hermitian positive definite (or semidefinite), with (-)* and null(-) denot-
ing the conjugate transpose and the null space of the corresponding matrix, respectively; see [8]. In
addition, when D =0 and m >n, [12, Theorem 3.3] showed that if M is nonsingular, then

rank(B) =n and rank('cq):n.

Note that these conditions are only necessary but sufficient.

In general, there are little results about the nonsingularity of the block two-by-two matrix M. To
our knowledge, in [16] Decker and Keller proved the following result about the nonsingularity of the
matrix M; see also [17].

Theorem 1.1. (See [16].) For the block two-by-two matrix M defined in (1.1), the following statements hold
true:

(a) if A is singular with dim(null(A)) =n > 1, then M is nonsingular if and only if
(a1) dim(range(B)) =n,
(az) range(A) Nrange(B) = {0},
(a3) dim(range(C)) =n, and
(ag) null(A) N null(C) = {0};
(b) if A is nonsingular, then M is nonsingular if and only if its Schur complement S = D — CA~' B is nonsin-
gular;
(c) if A is singular and dim(null(A)) > n, then M is singular.
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