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Let G be a simple connected graph of order n with degree sequence
d1,d2, . . . ,dn in non-increasing order. The signless Laplacian spec-
tral radius ρ(Q (G)) of G is the largest eigenvalue of its signless
Laplacian matrix Q (G). In this paper, we give a sharp upper bound
on the signless Laplacian spectral radius ρ(Q (G)) in terms of di ,
which improves and generalizes some known results.
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1. Introduction

We only consider simple undirected graphs which have no loops and multiple edges. Let G =
(V , E) be a simple graph with vertex set V = {v1, v2, . . . , vn} and edge set E . For any two vertices
vi, v j ∈ V , we write i ∼ j if vi and v j are adjacent. For any vertex vi ∈ V , denote the degree of vi
by di . The degree sequence of G is denoted by � = d1 � d2 � · · · � dn = δ in non-increasing order.

Let A(G) = (aij) be the adjacency matrix of G and D(G) = diag(d1,d2, . . . ,dn) be the diagonal
matrix of vertex degrees. Then Q (G) = D(G) + A(G) is called the signless Laplacian matrix of G . It
is well known that Q (G) is real symmetric, positive semi-definite matrix, which implies that its
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eigenvalues are negative real numbers. We may arrange its eigenvalues as ρ(Q (G)) = ρ1(Q (G)) �
ρ2(Q (G)) � · · · � ρn(Q (G)) � 0. ρ(Q (G)) is called the signless Laplacian spectral radius of G .

For a simple connected graph G with n vertices, m edges and the degree sequence � = d1 � d2 �
· · · � dn = δ, there are some known upper bounds on the signless Laplacian spectral radius ρ(Q (G))

as follows.
In [6], Oliveira et al. proved that
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In [2,3], Li, Liu et al. obtained that
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In 2010, Chen and Wang [1] got that
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Recently, using a similar method to an existing result related to the adjacency spectrum (see The-
orem 2.2 in [7]), Yu et al. [8] showed that
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In this paper, we also give a sharp upper bound on the signless Laplacian spectral radius ρ(Q (G))

in terms of di , which theoretically improves and generalizes some known results. Moreover, we also
determine all extremal graphs which attain this upper bound. Some examples show that this bound
is better than above presented results in some cases.

2. Main results

To prove our main results, we firstly need the following Lemma 2.1.

Lemma 2.1. (See [5].) If A is a nonnegative irreducible n×n matrix with largest eigenvalue ρ(A) and row-sums
r1, r2, . . . , rn, then

ρ(A) � max
1�i�n

ri

with equality if and only if the row-sums of A are all equal.

Now we shall provide an improvement of the previous upper bound (6) on the signless Laplacian
spectral radius. Remark that the proof of this bound is analogous to an existing result related to the
adjacency spectrum (see Theorem 1.7 in [4]).
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