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1. Introduction

Let (X,‖‖) be a finite dimensional real normed linear space. Let BX = {x ∈ X: ‖x‖ � 1} and SX =
{x ∈ X: ‖x‖ = 1} be the unit ball and the unit sphere of the normed linear space X respectively. Let
L(X) denote the space of all linear operators on X. We use the notion of orthogonality in the sense of
Birkhoff–James [3] to prove that a finite dimensional real normed linear space X is an inner product
space if for any linear operator T on X, T attains its norm at e1, e2 ∈ SX implies T attains its norm
at span{e1, e2} ∩ SX .

For any two elements x, y ∈ X, x is said to be orthogonal to y in the sense of Birkhoff–James,
written as x ⊥B y, iff

‖x‖ � ‖x + λy‖ ∀λ ∈R.
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Likewise for any two elements T , A ∈ L(X), T is said to be orthogonal to A, written as T ⊥B A, iff

‖T ‖ � ‖T + λA‖ ∀λ ∈R.

It is easy to verify that for T , A ∈ L(X) if there exists x ∈ SX such that ‖T x‖ = ‖T ‖ and T x ⊥B Ax, then
T ⊥B A. In a finite dimensional Hilbert space H , Bhatia and Semrl [2] and Paul et al. [5] independently
proved that T ⊥B A if and only if there exists x ∈X with ‖x‖ = 1 such that ‖T x‖ = ‖T ‖ and T x ⊥B Ax.
Bhatia and Semrl conjectured in their paper that if X is a finite dimensional normed linear space and
T ⊥B A then there exists x ∈ SX such that ‖T x‖ = ‖T ‖ and T x ⊥B Ax. Li and Schneider [4] gave
examples of finite dimensional normed linear spaces X in which there exist operators T , A ∈ L(X)

such that T ⊥B A but there exists no x ∈ SX such that ‖T x‖ = ‖T ‖ and T x ⊥B Ax, which proved that
the conjecture by Bhatia and Semrl is not true. Benítez et al. [1] proved that X is an inner product
space if and only if for T , A ∈ L(X) with T ⊥B A ⇔ there exists x ∈ SX such that ‖T x‖ = ‖T ‖ and
T x ⊥B Ax.

In this paper we prove that if T is a linear operator on a real normed linear space X such that T
attains its norm only at ±D , where D is a connected subset of SX then T ⊥B A if and only if there
exists x ∈ SX such that ‖T x‖ = ‖T ‖ and T x ⊥B Ax. Using this result we prove that a finite dimensional
real normed linear space X is an inner product space iff for any linear operator T on X, T attains its
norm at e1, e2 ∈ SX implies T attains its norm at span{e1, e2} ∩ SX .

2. Main results

Theorem 2.1. Let X be a finite dimensional real normed linear space. Let T ∈ L(X) be such that T attains its
norm at only ±D, where D is a connected subset of SX . Then for A ∈ L(X) with T ⊥B A there exists x ∈ D
such that T x ⊥B Ax.

Proof. If possible suppose that there does not exist any x ∈ D such that T x ⊥B Ax. We now obtain a
contradiction in the following three steps to complete the proof of the theorem.

Step 1. In the first step we show that D = W1 ∪ W2 where

W1 = {x ∈ D: ‖T x + λAx‖ > ‖T ‖ ∀λ > 0},
W2 = {x ∈ D: ‖T x + λAx‖ > ‖T ‖ ∀λ < 0}.

Let x0 ∈ D be arbitrary. Since T x0 is not orthogonal to Ax0 in the sense of Birkhoff–James so there
exists λ0 ∈ R such that ‖T x0 + λ0 Ax0‖ < ‖T x0‖ = ‖T ‖.

Now either λ0 > 0 or λ0 < 0. We assume that λ0 < 0.
Now, for λ > 0 ∃ t ∈ (0,1) such that

T x0 = t(T x0 + λAx0) + (1 − t)(T x0 + λ0 Ax0)

⇒ ‖T x0‖ < t
∥∥(T x0 + λAx0)

∥∥ + (1 − t)‖T x0‖
⇒ ‖T x0‖ <

∥∥(T x0 + λAx0)
∥∥.

Therefore ‖T x0 + λAx0‖ > ‖T x0‖ = ‖T ‖ ∀λ > 0.

If we assume that λ0 > 0 then we can similarly show that

‖T x0 + λAx0‖ > ‖T x0‖ = ‖T ‖ ∀λ < 0.

Thus for x ∈ D either ‖T x + λAx‖ > ‖T ‖ ∀λ > 0 or ‖T x + λAx‖ > ‖T ‖ ∀λ < 0 and so D = W1 ∪ W2.

Step 2. We now prove that W1 �= φ and W2 �= φ.
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