# Operator norm attainment and inner product spaces 

Debmalya Sain ${ }^{1}$, Kallol Paul *<br>Department of Mathematics, Jadavpur University, Kolkata 700032, West Bengal, India

## A R T I C L E I N F O

## Article history:

Received 9 April 2013
Accepted 8 July 2013
Available online 22 July 2013
Submitted by P. Semrl

## MSC:

primary 46C15
secondary 47A30
Keywords:
Orthogonality
Linear operators
Inner product spaces


#### Abstract

In this paper we prove that a finite dimensional real normed linear space $\mathbb{X}$ is an inner product space iff for any linear operator $T$ on $\mathbb{X}, T$ attains its norm at $e_{1}, e_{2} \in S_{\mathbb{X}}$ implies $T$ attains its norm at $\operatorname{span}\left\{e_{1}, e_{2}\right\} \cap S_{\mathbb{X}}$.


© 2013 Elsevier Inc. All rights reserved.

## 1. Introduction

Let $(\mathbb{X},\| \|)$ be a finite dimensional real normed linear space. Let $B_{\mathbb{X}}=\{x \in \mathbb{X}:\|x\| \leqslant 1\}$ and $S_{\mathbb{X}}=$ $\{x \in \mathbb{X}:\|x\|=1\}$ be the unit ball and the unit sphere of the normed linear space $\mathbb{X}$ respectively. Let $\mathbb{L}(\mathbb{X})$ denote the space of all linear operators on $\mathbb{X}$. We use the notion of orthogonality in the sense of Birkhoff-James [3] to prove that a finite dimensional real normed linear space $\mathbb{X}$ is an inner product space if for any linear operator $T$ on $\mathbb{X}, T$ attains its norm at $e_{1}, e_{2} \in S_{\mathbb{X}}$ implies $T$ attains its norm at $\operatorname{span}\left\{e_{1}, e_{2}\right\} \cap S_{\mathbb{X}}$.

For any two elements $x, y \in \mathbb{X}, x$ is said to be orthogonal to $y$ in the sense of Birkhoff-James, written as $x \perp_{B} y$, iff

$$
\|x\| \leqslant\|x+\lambda y\| \quad \forall \lambda \in \mathbb{R}
$$

[^0]Likewise for any two elements $T, A \in \mathbb{L}(\mathbb{X}), T$ is said to be orthogonal to $A$, written as $T \perp_{B} A$, iff

$$
\|T\| \leqslant\|T+\lambda A\| \quad \forall \lambda \in \mathbb{R}
$$

It is easy to verify that for $T, A \in \mathbb{L}(\mathbb{X})$ if there exists $x \in S_{\mathbb{X}}$ such that $\|T x\|=\|T\|$ and $T x \perp_{B} A x$, then $T \perp_{B}$ A. In a finite dimensional Hilbert space $H$, Bhatia and Semrl [2] and Paul et al. [5] independently proved that $T \perp_{B} A$ if and only if there exists $x \in \mathbb{X}$ with $\|x\|=1$ such that $\|T x\|=\|T\|$ and $T x \perp_{B} A x$. Bhatia and Semrl conjectured in their paper that if $\mathbb{X}$ is a finite dimensional normed linear space and $T \perp_{B} A$ then there exists $x \in S_{\mathbb{X}}$ such that $\|T x\|=\|T\|$ and $T x \perp_{B} A x$. Li and Schneider [4] gave examples of finite dimensional normed linear spaces $\mathbb{X}$ in which there exist operators $T, A \in \mathbb{L}(\mathbb{X})$ such that $T \perp_{B} A$ but there exists no $x \in S_{\mathbb{X}}$ such that $\|T x\|=\|T\|$ and $T x \perp_{B} A x$, which proved that the conjecture by Bhatia and Semrl is not true. Benítez et al. [1] proved that $\mathbb{X}$ is an inner product space if and only if for $T, A \in \mathbb{L}(\mathbb{X})$ with $T \perp_{B} A \Leftrightarrow$ there exists $x \in S_{\mathbb{X}}$ such that $\|T x\|=\|T\|$ and $T x \perp_{B} A x$.

In this paper we prove that if $T$ is a linear operator on a real normed linear space $\mathbb{X}$ such that $T$ attains its norm only at $\pm D$, where $D$ is a connected subset of $S_{\mathbb{X}}$ then $T \perp_{B} A$ if and only if there exists $x \in S_{\mathbb{X}}$ such that $\|T x\|=\|T\|$ and $T x \perp_{B} A x$. Using this result we prove that a finite dimensional real normed linear space $\mathbb{X}$ is an inner product space iff for any linear operator $T$ on $\mathbb{X}, T$ attains its norm at $e_{1}, e_{2} \in S_{\mathbb{X}}$ implies $T$ attains its norm at $\operatorname{span}\left\{e_{1}, e_{2}\right\} \cap S_{\mathbb{X}}$.

## 2. Main results

Theorem 2.1. Let $\mathbb{X}$ be a finite dimensional real normed linear space. Let $T \in \mathbb{L}(\mathbb{X})$ be such that $T$ attains its norm at only $\pm D$, where $D$ is a connected subset of $S_{\mathbb{X}}$. Then for $A \in \mathbb{L}(\mathbb{X})$ with $T \perp_{B} A$ there exists $x \in D$ such that $T x \perp_{B} A x$.

Proof. If possible suppose that there does not exist any $x \in D$ such that $T x \perp_{B} A x$. We now obtain a contradiction in the following three steps to complete the proof of the theorem.

Step 1. In the first step we show that $D=W_{1} \cup W_{2}$ where

$$
\begin{aligned}
& W_{1}=\{x \in D:\|T x+\lambda A x\|>\|T\| \forall \lambda>0\}, \\
& W_{2}=\{x \in D:\|T x+\lambda A x\|>\|T\| \forall \lambda<0\} .
\end{aligned}
$$

Let $x_{0} \in D$ be arbitrary. Since $T x_{0}$ is not orthogonal to $A x_{0}$ in the sense of Birkhoff-James so there exists $\lambda_{0} \in \mathbb{R}$ such that $\left\|T x_{0}+\lambda_{0} A x_{0}\right\|<\left\|T x_{0}\right\|=\|T\|$.

Now either $\lambda_{0}>0$ or $\lambda_{0}<0$. We assume that $\lambda_{0}<0$.
Now, for $\lambda>0 \exists t \in(0,1)$ such that

$$
\begin{aligned}
& T x_{0}=t\left(T x_{0}+\lambda A x_{0}\right)+(1-t)\left(T x_{0}+\lambda_{0} A x_{0}\right) \\
& \Rightarrow \quad\left\|T x_{0}\right\|<t\left\|\left(T x_{0}+\lambda A x_{0}\right)\right\|+(1-t)\left\|T x_{0}\right\| \\
& \Rightarrow \quad\left\|T x_{0}\right\|<\left\|\left(T x_{0}+\lambda A x_{0}\right)\right\| .
\end{aligned}
$$

Therefore $\left\|T x_{0}+\lambda A x_{0}\right\|>\left\|T x_{0}\right\|=\|T\| \quad \forall \lambda>0$.
If we assume that $\lambda_{0}>0$ then we can similarly show that

$$
\left\|T x_{0}+\lambda A x_{0}\right\|>\left\|T x_{0}\right\|=\|T\| \quad \forall \lambda<0 .
$$

Thus for $x \in D$ either $\|T x+\lambda A x\|>\|T\| \forall \lambda>0$ or $\|T x+\lambda A x\|>\|T\| \forall \lambda<0$ and so $D=W_{1} \cup W_{2}$.

Step 2. We now prove that $W_{1} \neq \phi$ and $W_{2} \neq \phi$.

# https://daneshyari.com/en/article/6416554 

Download Persian Version:

## https://daneshyari.com/article/6416554

## Daneshyari.com


[^0]:    * Corresponding author.

    E-mail addresses: saindebmalya@gmail.com (D. Sain), kalloldada@gmail.com (K. Paul).
    ${ }^{1}$ First author would like to thank UGC, Govt. of India for the financial support.

