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operator. We describe this set and study optimal factorizations. We
also relate this factorization with the notion of compatibility and
explore the polar decomposition of the operators in 7.
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1. Introduction

Given two classes of operators M and B in £(#H) (# a Hilbert space), a problem which naturally
arises is that of characterizing the set M - B of all products AB, A € M, B € B. These problems are
as old as matrix theory and they form now an interesting part of factorization theory for matrices
and operators. In 1958 Chandler Davis [8, Theorem 6.3] proved that, if Z denotes the set of Hermitian
involutions (i.e, T =T*=T~!) then Z-Z coincides with all unitaries T such that T is similar to T,
H. Radjavi and J.P. Williams [21] proved later that Z - £", where £" denotes the set of Hermitian
operators on H, is the set of all T € £(#) such that T is unitarily equivalent to T~!. Their paper
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also contains a characterization of P - P due to T. Crimmins and a characterization of P - £" (here,
‘P denotes the set of all orthogonal projectors of £(#)). Other characterizations of P - P have been
found by S. Nelson and M. Neumann [17], A. Arias and S. Gudder [1], T. Oikhberg [18] and the second
author and A. Maestripieri [6]. In a series of papers, J.R. Holub [14-16] (see also Fujii and Furuta [12])
studied, as an approach to general Wiener-Hopf or Toeplitz operators, some properties of the class
P-GT={PA: PcP and A € L7 is invertible}, where £* denotes the cone of positive semidefinite
operators in £(H). They observed that the set @ of oblique (i.e., not necessarily orthogonal) projec-
tions in £(H) is contained in P - G™.

In this paper, we characterize operators in 7 :=P - L1. We extend several results on P - P and
Holub’s theorem that Q is contained in P - G™. It should be noticed that Q is not contained in P - P,
but it is contained in (P-P)T, the set of all Moore-Penrose inverses of products PQ, P, Q € P. This is
an old result by Penrose [20] and Greville [13] which has been extended to the infinite dimensional
case in [5] and [4]. The paper [21] by H. Radjavi and ]. Williams and the survey [25] by PY. Wu
contain many characterizations of classes of the type M - B.

One of the main features of the class 77 - £ is that their elements admit a particular polar decom-
position where the partial isometry is an orthogonal projection. In fact, for T € 7, any factorization
T =PA, with P € P and A € L provides one such polar decomposition. Among all these expressions,
we find one (the optimal factorization) with some relevant minimal properties. The main characteri-
zation of T is based on a result of Z. Sebestyén [22]. We include a proof, which is completely different
from the original one, because it illustrates how the classical majorization theorem of R.G. Douglas
[10,11] can be used to provide special solutions of some operator equations. In fact, if T € 7 and P
is the orthogonal projection onto the closure of the image of T, then the positive solutions of the
equation PX =T play a natural role in this paper.

The contents of the paper are the following. Section 2 contains notations and the statements of
some theorems by Crimmins [11, Theorem 2.2], Douglas [10, Theorem 1] and Sebestyén [22]. We
include a proof of the last one based on Douglas’ theorem. Section 3 is devoted to several properties
of the set 7 and different characterizations of its elements. Just to mention two of them, T € L(H)
belongs to 7 if and only if there exists A > 0 such that (T*T)%? < AT*T? (Theorem 3.2). If R(T) is
closed then T € 7 if and only if R(T) + N(T) =% and TP € £, where P = Pg(ry (Theorem 3.3).
A formula for the oblique projection onto R(T) with nullspace N(T) is exhibited at Section 4, where
a particular factorization of T € T is shown to have several optimal properties. For instance, if T € T
then there exist Pt € P and At € £t such that T = PrAr and Pt < P and Ay < A for all P € P,
A e LT such that T = PA. The last result of Section 4 is the characterization of the fiber of T € T
by the map (P, A) — PA, ie., we find all pairs (P, A) € P x L+ such that PA =T. In Section 5 we
relate the different factorizations of T € 7 with the notions of compatibility and quasi-compatibility
between positive operators and closed subspaces. It turns out that, if T € 7 and T = PA for some
P=PseP and A e L7, then the pair (A, S) is compatible if and only if # = R(T) + N(T). The last
section studies some properties of the standard polar decomposition of T € 7.

2. Preliminaries

Throughout F, ‘H and K denote separable complex Hilbert spaces. By L£(#, ) we denote the
space of all bounded linear operators from A to K. The algebra £L(#, #H) is abbreviated by £(#). By
L(H)* we denote the cone of positive (semidefinite) operators of £L(#H) i.e., T € L(H)T if and only
if (Tx,x) >0 for all x € H. Furthermore, G(#) denotes the group of invertible operators on # and
CR(H) the set of closed range operators on . When no confusion can arise, we omit the Hilbert
space and we write it simply £*,G and CR respectively. Moreover, we denote G+ =G N L*. Given
T € L(H,K), R(T) denotes the range or image of T, N(T) the nullspace of T, T* the adjoint of T and
TT the Moore-Penrose inverse of T. Recall that TT € £(IC, H) if and only if R(T) is closed. We shall
denote by Q ={Q € L(H): Q =Q?2}and P={P e Q: P = P*}. Moreover, fixed a closed subspace S,
Ps stands for the orthogonal projection onto S. In the sequel we denote by S + W the direct sum
of the subspaces S and W. In particular, if S € W' we denote S @ W.

We end this section by stating three important results that we will frequently use along this
article.
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