

Products of projections and positive operators

M. Laura Arias ^a*,*1, Gustavo Corach ^a*,*b*,*∗*,*2, M. Celeste Gonzalez ^a*,*c*,*³

^a *Instituto Argentino de Matemática "Alberto P. Calderón", Saavedra 15, Piso 3, 1083 Buenos Aires, Argentina*

^b *Dpto. de Matemática, Facultad de Ingeniería, Universidad de Buenos Aires, Argentina*

^c *Instituto de Ciencias, Universidad Nacional de General Sarmiento, Argentina*

article info abstract

Article history: Received 17 April 2013 Accepted 11 May 2013 Available online 5 June 2013 Submitted by A. Böttcher

Keywords: Projections Positive operators Polar decomposition Partial isometries Compatibility

This article is devoted to the study of the set T of all products PA with *P* an orthogonal projection and *A* a positive (semidefinite) operator. We describe this set and study optimal factorizations. We also relate this factorization with the notion of compatibility and explore the polar decomposition of the operators in \mathcal{T} .

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Given two classes of operators M and B in $L(\mathcal{H})$ (\mathcal{H} a Hilbert space), a problem which naturally arises is that of characterizing the set $\mathcal{M} \cdot \mathcal{B}$ of all products AB, $A \in \mathcal{M}$, $B \in \mathcal{B}$. These problems are as old as matrix theory and they form now an interesting part of factorization theory for matrices and operators. In 1958 Chandler Davis [\[8, Theorem 6.3\]](#page--1-0) proved that, if $\mathcal I$ denotes the set of Hermitian involutions (i.e., $T = T^* = T^{-1}$) then $\mathcal{I} \cdot \mathcal{I}$ coincides with all unitaries *T* such that *T* is similar to T^{-1} . H. Radjavi and J.P. Williams [\[21\]](#page--1-0) proved later that $\mathcal{I} \cdot \mathcal{L}^h$, where \mathcal{L}^h denotes the set of Hermitian operators on H, is the set of all $T \in \mathcal{L}(\mathcal{H})$ such that *T* is unitarily equivalent to T^{-1} . Their paper

0024-3795/\$ – see front matter © 2013 Elsevier Inc. All rights reserved. <http://dx.doi.org/10.1016/j.laa.2013.05.008>

^{*} Corresponding author at: IAM-CONICET, Saavedra 15, Piso 3 (1083), Buenos Aires, Argentina.

E-mail addresses: lauraarias@conicet.gov.ar (M.L. Arias), gcorach@fi.uba.ar (G. Corach), celeste.gonzalez@conicet.gov.ar (M.C. Gonzalez).

¹ Partially supported by UBACYT 20020100100250; 2011–2014.

² Partially supported by PICT 808-2008 (FONACYT) and UBACYT 20020100100250; 2011–2014.

³ Partially supported by PIP 11220090100757 (CONICET).

also contains a characterization of $\mathcal{P} \cdot \mathcal{P}$ due to T. Crimmins and a characterization of $\mathcal{P} \cdot \mathcal{L}^h$ (here, P denotes the set of all orthogonal projectors of $L(H)$). Other characterizations of $P \cdot P$ have been found by S. Nelson and M. Neumann [\[17\],](#page--1-0) A. Arias and S. Gudder [\[1\],](#page--1-0) T. Oikhberg [\[18\]](#page--1-0) and the second author and A. Maestripieri [\[6\].](#page--1-0) In a series of papers, J.R. Holub $[14-16]$ (see also Fujii and Furuta $[12]$) studied, as an approach to general Wiener–Hopf or Toeplitz operators, some properties of the class $\mathcal{P} \cdot \mathcal{G}^+ = \{PA: P \in \mathcal{P} \text{ and } A \in \mathcal{L}^+ \text{ is invertible}\},$ where \mathcal{L}^+ denotes the cone of positive semidefinite operators in $\mathcal{L}(\mathcal{H})$. They observed that the set Q of oblique (i.e., not necessarily orthogonal) projections in $\mathcal{L}(\mathcal{H})$ is contained in $\mathcal{P} \cdot \mathcal{G}^+$.

In this paper, we characterize operators in $\mathcal{T} := \mathcal{P} \cdot \mathcal{L}^+$. We extend several results on $\mathcal{P} \cdot \mathcal{P}$ and Holub's theorem that Q is contained in $\mathcal{P} \cdot \mathcal{G}^+$. It should be noticed that Q is not contained in $\mathcal{P} \cdot \mathcal{P}$. but it is contained in $(P \cdot P)^{\dagger}$, the set of all Moore–Penrose inverses of products *PQ*, *P*, *Q* $\in \mathcal{P}$. This is an old result by Penrose [\[20\]](#page--1-0) and Greville [\[13\]](#page--1-0) which has been extended to the infinite dimensional case in $[5]$ and $[4]$. The paper $[21]$ by H. Radjavi and J. Williams and the survey $[25]$ by P.Y. Wu contain many characterizations of classes of the type $M \cdot \mathcal{B}$.

One of the main features of the class $\mathcal{P} \cdot \mathcal{L}^+$ is that their elements admit a particular polar decomposition where the partial isometry is an orthogonal projection. In fact, for $T \in \mathcal{T}$, any factorization *T* = *PA*, with *P* ∈ P and *A* ∈ L^+ provides one such polar decomposition. Among all these expressions, we find one (the optimal factorization) with some relevant minimal properties. The main characterization of $\mathcal T$ is based on a result of Z. Sebestyén [\[22\].](#page--1-0) We include a proof, which is completely different from the original one, because it illustrates how the classical majorization theorem of R.G. Douglas [\[10,11\]](#page--1-0) can be used to provide special solutions of some operator equations. In fact, if $T \in \mathcal{T}$ and *P* is the orthogonal projection onto the closure of the image of *T* , then the positive solutions of the equation $PX = T$ play a natural role in this paper.

The contents of the paper are the following. Section 2 contains notations and the statements of some theorems by Crimmins [\[11, Theorem 2.2\],](#page--1-0) Douglas [\[10, Theorem 1\]](#page--1-0) and Sebestyén [\[22\].](#page--1-0) We include a proof of the last one based on Douglas' theorem. Section [3](#page--1-0) is devoted to several properties of the set \mathcal{T} and different characterizations of its elements. Just to mention two of them, $T \in \mathcal{L}(\mathcal{H})$ belongs to \mathcal{T} if and only if there exists $\lambda \ge 0$ such that $(T^*T)^2 \le \lambda T^*T^2$ (Theorem [3.2\)](#page--1-0). If $R(T)$ is closed then $T \in \mathcal{T}$ if and only if $R(T) + N(T) = \mathcal{H}$ and $TP \in \mathcal{L}^+$, where $P = P_{R(T)}$ (Theorem [3.3\)](#page--1-0). A formula for the oblique projection onto $R(T)$ with nullspace $N(T)$ is exhibited at Section [4,](#page--1-0) where a particular factorization of $T \in \mathcal{T}$ is shown to have several optimal properties. For instance, if $T \in \mathcal{T}$ then there exist $P_T \in \mathcal{P}$ and $A_T \in \mathcal{L}^+$ such that $T = P_T A_T$ and $P_T \leq P$ and $A_T \leq A$ for all $P \in \mathcal{P}$, $A \in \mathcal{L}^+$ such that $T = PA$. The last result of Section [4](#page--1-0) is the characterization of the fiber of $T \in \mathcal{T}$ by the map $(P, A) \rightarrow PA$, i.e., we find all pairs $(P, A) \in \mathcal{P} \times \mathcal{L}^+$ such that $PA = T$. In Section [5](#page--1-0) we relate the different factorizations of $T \in \mathcal{T}$ with the notions of compatibility and quasi-compatibility between positive operators and closed subspaces. It turns out that, if $T \in \mathcal{T}$ and $T = PA$ for some *P* = *P*_S ∈ *P* and *A* ∈ L⁺, then the pair *(A, S)* is compatible if and only if $\mathcal{H} = \overline{R(T)} + N(T)$. The last section studies some properties of the standard polar decomposition of $T \in \mathcal{T}$.

2. Preliminaries

Throughout F, H and K denote separable complex Hilbert spaces. By $\mathcal{L}(\mathcal{H},\mathcal{K})$ we denote the space of all bounded linear operators from H to K. The algebra $\mathcal{L}(\mathcal{H},\mathcal{H})$ is abbreviated by $\mathcal{L}(\mathcal{H})$. By $\mathcal{L}(H)^+$ we denote the cone of positive (semidefinite) operators of $\mathcal{L}(\mathcal{H})$ i.e., $T \in \mathcal{L}(\mathcal{H})^+$ if and only if $\langle Tx, x \rangle \geq 0$ for all *x* ∈ H. Furthermore, $\mathcal{G}(\mathcal{H})$ denotes the group of invertible operators on H and $\mathcal{CR}(H)$ the set of closed range operators on H. When no confusion can arise, we omit the Hilbert space and we write it simply \mathcal{L}^+ , $\mathcal G$ and \mathcal{CR} respectively. Moreover, we denote $\mathcal G^+ = \mathcal G \cap \mathcal L^+$. Given $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$, $R(T)$ denotes the range or image of *T*, $N(T)$ the nullspace of *T*, T^* the adjoint of *T* and *T*[†] the Moore–Penrose inverse of *T*. Recall that *T*[†] ∈ $L(K, H)$ if and only if *R*(*T*) is closed. We shall denote by $Q = \{Q \in \mathcal{L}(\mathcal{H}) : Q = Q^2\}$ and $\mathcal{P} = \{P \in \mathcal{Q} : P = P^*\}$. Moreover, fixed a closed subspace S, P_S stands for the orthogonal projection onto S. In the sequel we denote by $S + W$ the direct sum of the subspaces S and W. In particular, if $S \subseteq \mathcal{W}^{\perp}$ we denote $S \oplus \mathcal{W}$.

We end this section by stating three important results that we will frequently use along this article.

Download English Version:

<https://daneshyari.com/en/article/6416579>

Download Persian Version:

<https://daneshyari.com/article/6416579>

[Daneshyari.com](https://daneshyari.com)