On the Fiedler value of large planar graphs

CrossMark

Lali Barrière ${ }^{\mathrm{a}}$, Clemens Huemer ${ }^{\mathrm{a}}$, Dieter Mitsche ${ }^{\mathrm{a}}$, David Orden ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Spain
${ }^{\text {b }}$ Departamento de Física y Matemáticas, Universidad de Alcalá, Spain

A R T I C L E I N F O

Article history:

Received 18 June 2012
Accepted 31 May 2013
Available online 14 June 2013
Submitted by V. Nikiforov

Keywords:

Fiedler value
Algebraic connectivity
Laplacian matrix
Planar graph
Bounded genus graph
Minor-free graph

Abstract

The Fiedler value λ_{2}, also known as algebraic connectivity, is the second smallest Laplacian eigenvalue of a graph. We study the maximum Fiedler value among all planar graphs G with n vertices, denoted by $\lambda_{2 \text { max }}$, and we show the bounds $2+\Theta\left(\frac{1}{n^{2}}\right) \leqslant \lambda_{2 \text { max }} \leqslant$ $2+O\left(\frac{1}{n}\right)$. We also provide bounds on the maximum Fiedler value for the following classes of planar graphs: Bipartite planar graphs, bipartite planar graphs with minimum vertex-degree 3, and outerplanar graphs. Furthermore, we derive almost tight bounds on $\lambda_{2 \text { max }}$ for two more classes of graphs, those of bounded genus and K_{h}-minor-free graphs.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a simple graph with vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$. The Laplacian matrix $L(G)$ is the $n \times n$ matrix with entries

$$
\ell_{i, j}= \begin{cases}\operatorname{deg}\left(v_{i}\right) & \text { if } i=j, \\ -1 & \text { if } i \neq j \text { and } v_{i} v_{j} \in E \\ 0 & \text { if } i \neq j \text { and } v_{i} v_{j} \notin E\end{cases}
$$

Let the eigenvalues of $L(G)$ be $0=\lambda_{1} \leqslant \lambda_{2} \leqslant \lambda_{3} \leqslant \cdots \leqslant \lambda_{n}$. The second smallest eigenvalue λ_{2}, or $\lambda_{2}(G)$, is called the Fiedler value or algebraic connectivity [7] of G. It is related to a number of graph invariants and it plays a special role in many problems in Physics and Chemistry, where spectral techniques can be applied $[1,7,15,16]$. Another classical problem for which the techniques introduced

[^0]Table 1
The bounds on $\lambda_{2 \text { max }}$ obtained for each class of graphs studied.

Planar graphs	$2+\Theta\left(\frac{1}{n^{2}}\right) \leqslant \lambda_{2 \max } \leqslant 2+O\left(\frac{1}{n}\right)$
Bipartite planar graphs, $\delta=3$	$1+\Theta\left(\frac{1}{n^{2}}\right) \leqslant \lambda_{2 \max } \leqslant 1+O\left(\frac{1}{n^{1 / 3}}\right)$
Bipartite planar graphs, n large	$\lambda_{2 \max }=2$
Outerplanar graphs	$1+\Theta\left(\frac{1}{n^{2}}\right) \leqslant \lambda_{2 \max } \leqslant 1+O\left(\frac{1}{n}\right)$
Graphs of bounded genus g	$2+\Theta\left(\frac{1}{n^{2}}\right) \leqslant \lambda_{2 \max } \leqslant 2+O\left(\frac{1}{\sqrt{n}}\right)$
K_{h}-minor-free graphs, $4 \leqslant h \leqslant 9$	$h-2 \leqslant \lambda_{2 \max } \leqslant h-2+O\left(\frac{1}{\sqrt{n}}\right)$
K_{h}-minor-free graphs, h large	$\lambda_{2 \max } \leqslant \alpha h \sqrt{\log (h)}+O\left(\frac{\alpha h^{5 / 2} \sqrt{\log (h)}}{\sqrt{n}}\right)$ for $\alpha=0.319 \ldots+o(1)$

in [7] have revealed to be very successful is graph partitioning [6]. The Fiedler value has also been proved to be related to the size of separators, as well as to the quality of geometric embeddings of the graph $[19,20]$.

A number of results have been obtained for λ_{2}, for which we refer the interested reader to the surveys $[1,16]$. As for recent works, the authors of [4] make use of flows and the choice of an appropriate metric for proving bounds on λ_{2}. Similar techniques are used in [12] to study higher eigenvalues of graphs of bounded genus. Another work devoted to upper bounds on the algebraic connectivity is [8].

The main goal of the present work is to study the maximum of $\lambda_{2}(G)$ over all planar graphs G with n vertices, which will be denoted as $\lambda_{2 \text { max }}$. The bound $\lambda_{2 \text { max }}<6$ follows easily, since for any graph $G=(V, E)$ with n vertices $\lambda_{2}(G) \leqslant \frac{2|E|}{n-1}$ [7] and if G is planar then $|E| \leqslant 3 n-6$. Molitierno [17] proved that $\lambda_{2 \max } \leqslant 4$, with exactly two planar graphs attaining this bound: the complete graph with four vertices, K_{4}, and the octahedral graph $K_{2,2,2}$. It is known that λ_{2} is much smaller for some planar graph classes. In particular, trees have $\lambda_{2} \leqslant 1$, with the bound achieved only for $K_{1, n-1}$ [14]. Moreover, Spielman and Teng [20] proved that for the class of bounded-degree planar graphs with n vertices, $\lambda_{2 \text { max }}$ tends towards zero when n tends towards infinity.

We also study $\lambda_{2 \text { max }}$ for bipartite planar graphs, outerplanar graphs, graphs of bounded genus and K_{h}-minor-free graphs. Table 1 summarizes our results. Some of them improve our previous results presented in [3].

For all upper bounds on $\lambda_{2 \text { max }}$ we make use of the following Embedding Lemma, which makes clear the relation between geometric embeddings of graphs and the Fiedler value. It is a direct consequence of the so-called Courant-Fischer principle and can be found in $[15,20]$.

Lemma 1.1 (Embedding Lemma). Let $G=(V, E)$ be a graph. Then λ_{2}, the Fiedler value of G, is given by

$$
\lambda_{2}=\min \frac{\sum_{(i, j) \in E}\left\|\vec{v}_{i}-\vec{v}_{j}\right\|^{2}}{\sum_{i=1}^{n}\left\|\vec{v}_{i}\right\|^{2}}
$$

where the minimum is taken over all non-zero vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\} \subset \mathbb{R}^{n}$ such that $\sum_{i=1}^{n} \vec{v}_{i}=\overrightarrow{0}$.

We will make use of the Embedding Lemma 1.1 in two ways. Before introducing them, let us state a result by Spielman and Teng for planar graphs.

Theorem 1.2. (See Spielman and Teng [20].) Let G be a planar graph with n vertices and maximum degree Δ. Then, the Fiedler value of G is at most $\frac{8 \Delta}{n}$.

https://daneshyari.com/en/article/6416630

Download Persian Version:

https://daneshyari.com/article/6416630

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: lali@ma4.upc.edu (L. Barrière), clemens@ma4.upc.edu (C. Huemer), dieter.mitsche@ma4.upc.edu (D. Mitsche), david.orden@uah.es (D. Orden).

