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In this paper, we consider matrices with entries from a semiring S.
We first discuss some generalized inverses of rectangular and
square matrices. We establish necessary and sufficient conditions
for the existence of the Moore–Penrose inverse of a regular matrix.
For an m × n matrix A, an n × m matrix P and a square matrix
Q of order m, we present necessary and sufficient conditions for
the existence of the group inverse of Q A P with the additional
property that P (Q A P )# Q is a {1,2} inverse of A. The matrix
product used here is the usual matrix multiplication. The result
provides a method for generating elements in the set of {1,2}
inverses of an m × n matrix A starting from an initial {1} inverse
of A. We also establish a criterion for the existence of the group
inverse of a regular square matrix. We then consider a semiring
structure (Mm×n(S),+,◦) made up of m × n matrices with the
addition defined entry-wise and the multiplication defined as in
the case of the Hadamard product of complex matrices. In the
semiring (Mm×n(S),+,◦), we present criteria for the existence of
the Drazin inverse and the Moore–Penrose inverse of an m × n
matrix. When S is commutative, we show that the Hadamard
product preserves the Hermitian property, and provide a Schur-
type product theorem for the product A ◦ (C C∗) of a positive
semidefinite n × n matrix A and an n × n matrix C .
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1. Introduction

The concept of the generalized inverse seems to have been first mentioned in print by Fred-
holm [4], where a particular generalized inverse of an integral operator was given. The class of all
generalized inverses was characterized in 1912 by Hurwitz [11]. The algebraic nature of generalized
inverses of matrices was established in the works of Drazin [3], Moore [16], Penrose [21] and oth-
ers. The theory of generalized inverses of real and complex matrices is a well-developed subject and
the results of this theory and its applications can be found in many well-known monographs; see
for instance [13] and [26]. Some researchers studied generalized inverses of matrices, such as the
Moore–Penrose inverse, the group inverse and the Drazin inverse, in more general algebraic settings
like commutative rings [2], arbitrary rings [19,24,25], arbitrary field [9] and [20] and idempotent
semirings [18]. This prompted us to investigate some of the generalized inverses for matrices over an
arbitrary semiring. The concept of semirings was introduced by H.S. Vandiver in 1935, and since then
it has been studied by many authors (see, e.g., [6,7]). Semirings constitute a fairly natural generaliza-
tion of rings. The theory of matrices over semirings has important applications in optimization theory
and graph theory; see [1] and [5].

A semiring consists of a nonempty set S with two binary operations on S, addition (+) and multi-
plication (·), such that the following conditions hold:

(1) (S,+) is an Abelian monoid with an identity element denoted by 0 (unless otherwise stated).
(2) (S, ·) is a monoid with an identity element denoted by 1 (unless otherwise stated).
(3) a · (b + c) = a · b + a · c and (b + c) · a = b · a + c · a for all a,b, c ∈ S.
(4) a · 0 = 0 · a = 0 for all a ∈ S.
(5) 1 �= 0.

We use, unless otherwise stated, the symbol S to denote both the set and the semiring structure,
and usually write ab instead of a · b for all a,b ∈ S. If a ∈ S is invertible, we write a−1a−1 as a−2.
It should be noted that every ring with a unity is a semiring. A semiring S is called commutative if
ab = ba for all a,b ∈ S. Examples of commutative semirings include the two-element Boolean algebra
B = {0,1} and the fuzzy algebra F = {t: 0 � t � 1} with the binary operations a + b = max{a,b}
and ab = min{a,b} in both examples, and the nonnegative integers and nonnegative real numbers
with standard operations of addition and multiplication. A simple example of a non-commutative
semiring can be constructed as follows: Let S be a semiring which is additively non-idempotent, that
is, 1+1 �= 1. Then the set of all 2×2 matrices over S with the usual matrix addition and multiplication
(see Definition 1.1) is a non-commutative semiring. The non-commuting property could be seen by

observing that
(

0 1
1 1

)(
1 1
1 1

)
�=

(
1 1
1 1

)(
0 1
1 1

)
.

Throughout this paper the symbol S is taken to be a semiring, and m and n are taken to be
positive integers. We denote the set of positive integers by N, and the set {1, . . . ,n} is denoted by 〈n〉.
We denote by Mm×n(S) the set of all m × n matrices with entries from S. The set Mm×m(S) is simply
written as Mm(S). We define M(S;m,n) by

M(S;m,n) = Mm×n(S) ∪ Mn×m(S) ∪ Mm(S) ∪ Mn(S). (1.1)

The transpose of A ∈ Mm×n(S) is denoted by At . If A = (aij) ∈ Mm×n(S), we also write aij as (A)i j .
The trace of A = (aij) ∈ Mn(S), denoted by tr(A), is

∑n
i=1 aii . A matrix D ∈ Mn(S) is called diagonal

if all of its off-diagonal entries are the additive identity in S. If a diagonal matrix D ∈ Mn(S) satisfies
(D)ii = di for all i ∈ 〈n〉, we write D as diag(d1, . . . ,dn).

Definitions 1.1 and 1.2 introduce semiring structures on Mn(S) and Mm×n(S), respectively. The mul-
tiplication operation is a profound difference between the two structures.

Definition 1.1. Let A = (aij) ∈ Mm×n(S), B = (bij) ∈ Mm×n(S) and C = (ci j) ∈ Mn×m(S). We define the
addition A + B and multiplication A · C by
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