Geometric distance-regular graphs without 4-claws

S. Bang
Department of Mathematics, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 712-749, Republic of Korea

ARTICLEINFO

Article history:

Received 9 November 2010
Accepted 12 July 2012
Available online 30 August 2012
Submitted by R.A. Brualdi
AMS classification:
05C50
05E30

Keywords:
Delsarte clique
Geometric distance-regular graph
n-Claw
Smallest eigenvalue

Abstract

A non-complete distance-regular graph Γ is called geometric if there exists a set \mathcal{C} of Delsarte cliques such that each edge of Γ lies in a unique clique in \mathcal{C}. In this paper we determine the non-complete distance-regular graphs satisfying $\max \left\{3, \frac{8}{3}\left(a_{1}+1\right)\right\}<k<4 a_{1}$ $+10-6 c_{2}$. To prove this result, we first show by considering nonexistence of 4 -claws that any non-complete distance-regular graph satisfying max $\left\{3, \frac{8}{3}\left(a_{1}+1\right)\right\}<k<4 a_{1}+10-6 c_{2}$ is a geometric distance-regular graph with smallest eigenvalue -3 . Moreover, we classify the geometric distance-regular graphs with smallest eigenvalue -3 . As an application, two feasible intersection arrays in the list of [7, Chapter 14] are ruled out.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let Γ be a distance-regular graph with valency k and let $\theta_{\min }=\theta_{\min }(\Gamma)$ be its smallest eigenvalue. Any clique C in Γ satisfies

$$
\begin{equation*}
|C| \leqslant 1-\frac{k}{\theta_{\min }} \tag{1}
\end{equation*}
$$

(see [7, Proposition 4.4 .6 (i)]). The bound (1) is due to Delsarte, and a clique C in Γ is called a Delsarte clique if C contains exactly $1-\frac{k}{\theta_{\min }}$ vertices. Godsil [11] introduced the following notion of a geometric distance-regular graph. A non-complete distance-regular graph Γ is called geometric if there exists a set \mathcal{C} of Delsarte cliques such that each edge of Γ lies in a unique Delsarte clique in \mathcal{C}. In this case we say that Γ is geometric with respect to \mathcal{C}. There are many examples of geometric distance-regular graphs, such as bipartite distance-regular graphs, Hamming graphs, Johnson graphs, Grassmann graphs and regular near $2 D$-gons.

[^0]In particular, the local structure of geometric distance-regular graphs plays an important role in the study of spectral characterization of some distance-regular graphs. In [1] we show that for given integer $D \geqslant 2$, any graph cospectral with the Hamming graph $H(D, q)$ is locally the disjoint union of D copies of the complete graph of size $q-1$, for q large enough. Using this result and [4], we show in [1] that the Hamming graph $H(3, q)$ with $q \geqslant 36$ is uniquely determined by its spectrum.

Neumaier [17] showed that except for a finite number of graphs, any geometric strongly regular graph with a given smallest eigenvalue $-m, m>1$ integer, is either a Latin square graph or a Steiner graph (see [17] and Remark 4.4 for the definitions). An n-claw is an induced subgraph on $n+1$ vertices which consists of one vertex of valency n and n vertices of valency 1 . Each distance-regular graph without 2-claws is a complete graph. Note that for any geometric distance-regular graph Γ with respect to \mathcal{C} a set of Delsarte cliques, the number of Delsarte cliques in \mathcal{C} containing a fixed vertex is $-\theta_{\min }$. Hence any geometric distance-regular graph with smallest eigenvalue -2 contains no 3 -claws. Blokhuis and Brouwer [6] determined the distance-regular graphs without 3-claws. Yamazaki [21] considered distance-regular graphs which are locally a disjoint union of three cliques of size $a_{1}+1$, and for $a_{1} \geqslant 1$ these graphs are geometric distance-regular graphs with smallest eigenvalue -3 .

In Theorem 4.3 we determine the geometric distance-regular graphs with smallest eigenvalue -3 . We now state the main result of this paper.

Theorem 1.1. Let Γ be a non-complete distance-regular graph with valency k, diameter D and intersection numbers $a_{i}, b_{i}, c_{i}(1 \leqslant i \leqslant D)$. If Γ satisfies

$$
\max \left\{3, \frac{8}{3}\left(a_{1}+1\right)\right\}<k<4 a_{1}+10-6 c_{2}
$$

then Γ is one of the following, where $\iota(\Gamma)$ and h are as defined in (2) and (3).
(i) A Steiner graph $S_{3}(\alpha-3)$, i.e., a geometric strongly regular graph with parameters $\left(\frac{(2 \alpha-3)(\alpha-2)}{3}, 3 \alpha-9, \alpha, 9\right)$, where $\alpha \geqslant 36$ and $\alpha \not \equiv 1(\bmod 3)$.
(ii) A Latin square graph $L S_{3}(\alpha)$, i.e., a geometric strongly regular graph with parameters ($\left.\alpha^{2}, 3(\alpha-1), \alpha, 6\right)$, where $\alpha \geqslant 24$.
(iii) The generalized hexagon of order $(8,2)$ with $\iota(\Gamma)=\{24,16,16 ; 1,1,3\}$.
(iv) One of the two generalized hexagons of order $(2,2)$ with $\iota(\Gamma)=\{6,4,4 ; 1,1,3\}$.
(v) A generalized octagon of order $(4,2)$ with $\iota(\Gamma)=\{12,8,8,8 ; 1,1,1,3\}$.
(vi) The Johnson graph $J(\alpha, 3)$, where $\alpha \geqslant 20$.
(vii) $\iota(\Gamma)=\{3 \alpha+3,2 \alpha+2, \alpha+2-\beta ; 1,2,3 \beta\}$, where $\alpha \geqslant 6$ and $\alpha \geqslant \beta \geqslant 1$.
(viii) The halved Foster graph with $\iota(\Gamma)=\{6,4,2,1 ; 1,1,4,6\}$.
(ix) $D=h+2 \geqslant 4$ and

$$
\left(c_{i}, a_{i}, b_{i}\right)=\left\{\begin{array}{ll}
(1, \alpha, 2 \alpha+2) & \text { for } 1 \leqslant i \leqslant h \\
(2,2 \alpha+\beta-1, \alpha-\beta+2) & \text { for } i=h+1 \\
(3 \beta, 3 \alpha-3 \beta+3,0) & \text { for } i=h+2
\end{array}, \text { where } \alpha \geqslant \beta \geqslant 2\right.
$$

(x) $D=h+2 \geqslant 3$ and

$$
\left(c_{i}, a_{i}, b_{i}\right)= \begin{cases}(1, \alpha, 2 \alpha+2) & \text { for } 1 \leqslant i \leqslant h \\ (1, \alpha+2 \beta-2,2 \alpha-2 \beta+4) & \text { for } i=h+1 \quad, \text { where } \alpha \geqslant \beta \geqslant 2 . \\ (3 \beta, 3 \alpha-3 \beta+3,0) & \text { for } i=h+2\end{cases}
$$

https://daneshyari.com/en/article/6416662

Download Persian Version:

https://daneshyari.com/article/6416662

Daneshyari.com

[^0]: E-mail address: sjbang@ynu.ac.kr

