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The projective space of order n over the finite field Fq, denoted here

as Pq(n), is the set of all subspaces of the vector space F
n
q . The pro-

jective space can be endowed with distance function dS(X, Y) =
dim(X) + dim(Y) − 2 dim(X ∩ Y) which turns Pq(n) into a metric

space. With this, an (n,M, d) codeC in projective space is a subset of

Pq(n) of sizeM such that the distance between any two codewords

(subspaces) is at least d. Koetter and Kschischang recently showed

that codes in projective space are precisely what is needed for error-

correction in networks: an (n,M, d) code can correct t packet errors

and ρ packet erasures introduced (adversarially) anywhere in the

network as long as 2t + 2ρ < d. This motivates our interest in such

codes.

In this paper, we examine the two fundamental concepts of “com-

plements” and “linear codes” in the context ofPq(n). These turn out

to be considerably more involved than their classical counterparts.

These concepts are examined from twodifferent points of view: cod-

ing theory and lattice theory. Our results reveal a number of surpris-

ing phenomena pertaining to complements and linearity in Pq(n)
and gives rise to several interesting problems.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let F
n
q be the canonical vector space of dimension n over the finite field Fq of order q, where q

is a prime power. The projective space of order n over Fq, denoted herein by Pq(n), is the set of all
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the subspaces of F
n
q , including {0} and F

n
q itself. Given a nonnegative integer k ≤ n, the set of all

subspaces of F
n
q that have dimension k is known as a Grassmannian, and usually denoted by Gq(n, k).

Thus Pq(n) = ∪0≤k≤nGq(n, k). It is well known that

|Gq(n, k)| =
[
n

k

]
:= (qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
,

where
[
n

k

]
is the q-aryGaussian coefficient. It turns out that thenaturalmeasure of distance, the subspace

distance in Pq(n), is given by

dS(X, Y) := dim(X) + dim(Y) − 2 dim(X ∩ Y), (1)

for all X, Y ∈ Pq(n). It is well known (cf. [1,10]) that the function above is a metric; thus both Pq(n)
and Gq(n, k) can be regarded as metric spaces. Given a metric space, one can define codes. We say

that C ⊆ Pq(n) is an (n,M, d) code in projective space if |C| = M and dS(X, Y) ≥ d for all X, Y ∈ C.

If an (n,M, d) code C is contained in Gq(n, k) for some k, we say that C is an (n,M, d, k) code. An

(n,M, d, k) code is also called a constant dimension code.

The (n,M, d), respectively (n,M, d, k), codes in projective space are akin to the familiar codes in

the Hamming space, respectively (constant weight) codes in the Johnson space, where the Hamming

distance serves as the metric. There are, however, important differences. For all q, n and k, the metric

spaceGq(n, k) corresponds to a distance-regular graph, similar to the distance-regular graph resulting

from the Johnson space. On the other hand, while the Hamming space F
n
q is always distance-regular

(as a graph), the projective space Pq(n) is not. This implies that conventional geometric intuition does

not always apply.

Codes in Gq(n, k) were studied, somewhat sparsely, over the past twenty years. For example, the

nonexistence of perfect codes in Gq(n, k) was proved in [3] and again in [12]. In [1] it was shown

that “Steiner structures” yield diameter-perfect codes in Gq(n, k); properties of these structures were

studied in [14]. It appears that codes in the projective spacePq(n)were not studied at all, until recently,

e.g., [8–11,16,18].

Recently, Koetter and Kschischang [10] showed that codes in Pq(n) are precisely what is needed

for error-correction in networks: an (n,M, d) code can correct any t packet errors and any ρ packet

erasures introduced (adversarially) anywhere in the network as long as 2t + 2ρ < d. This motivates

our interest in such codes.

The well known concept of q-analogs replaces subsets by subspaces of a vector space over a finite

field and their sizes by dimensions of the subspaces. In this respect, constant dimension codes are the

q-analog of constant weight codes.

The goal of this paper is to examine two basic concepts in coding theory, namely “complements”

and “linear codes”. These concepts are well-known in coding theory for binary codes and codes over

Fq, respectively. Various problems concerning complements of subspaces over Fq were considered in

the past, e.g., [4–6,13]. Our goal is to discuss these concepts in the projective space. We will tackle

these concepts from two different points of view, coding theory and lattice theory.

The rest of this paper is organized as follows. In Section2wewill give a formal definition for the term

complement. Four propertieswill be required. A functionwhich satisfies only some of these properties

will be called quasi-complement. We will consider each of the fifteen nonempty subsets of these four

properties for the existence of quasi-complements. Wewill discuss what is the largest subset ofPq(n)
on which a complement function can be defined. In Section 3 we define linear and quasi-linear codes

in Pq(n) and show examples of linear codes of small size. We conjecture and give some evidence

that larger codes might not exist. In Section 4 we present our concepts through another point of view,

lattice theory.Weprove someconnectionbetweenproperties of lattices andquasi-complements.Open

problems for further research are presented in Section 5.
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