Linear Algebra and its Applications 438 (2013) 231-241

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

More on G-matrices Miroslav Fiedler^{a,*,1}, Thomas L. Markham^b

^a Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodárenskou věží 2, 182 07 Praha 8, Czech Republic ^b Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

ARTICLE INFO

Article history: Received 20 February 2012 Accepted 15 July 2012 Available online 6 September 2012

Submitted by P. Šemrl

AMS classification: 15A23 15A57 15A48

Keywords: Cauchy matrix G-matrix Complex orthogonal matrix

ABSTRACT

The first author and Hall defined recently a G-matrix as a real nonsingular matrix A such that there exist diagonal matrices D_1 and D_2 for which $(A^T)^{-1} = D_1 A D_2$. The class of G-matrices was shown to possess interesting properties. In this paper, some new characterizations are found and extensions to rectangular and complex matrices are discussed.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The first author and Hall defined in [2] the class of so called G-matrices. There, a real nonsingular matrix *A* was called G-matrix if there exist diagonal matrices D_1 and D_2 such that $(A^T)^{-1} = D_1AD_2$. It was observed in [2] that the following holds:

Theorem 1.1. All orthogonal matrices are G-matrices.

Theorem 1.2. All nonsingular diagonal matrices are G-matrices.

Theorem 1.3. If A is a G-matrix, then both A^T and A^{-1} are G-matrices.

* Corresponding author.

E-mail addresses: fiedler@cs.cas.cz, fiedler@math.cas.cz (M. Fiedler), markham@math.sc.edu (T.L. Markham).

¹ Research supported by the Institutional Research Plan AV 0Z10300504.

0024-3795/\$ - see front matter © 2012 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.laa.2012.07.054 **Theorem 1.4.** If A is an $n \times n$ G-matrix and D is an $n \times n$ nonsingular diagonal matrix, then both AD and DA are G-matrices.

Theorem 1.5. If A is an $n \times n$ G-matrix and P is an $n \times n$ permutation matrix, then both AP and PA are G-matrices.

Theorem 1.6. If A is a G-matrix, then both matrices A and A^{-T} have the same zero, non-zero structure. Thus the zero, non-zero structures of A and A^{-1} are symmetric to each other.

Theorem 1.7. The direct sum of G-matrices is again a G-matrix.

The product form of the definition leads to the following two theorems.

Theorem 1.8. Compound matrices of a G-matrix are also G-matrices.

Theorem 1.9. The Kronecker product of G-matrices is a G-matrix.

Also, the following theorem was proved.

Theorem 1.10. A 2 \times 2 matrix is G-matrix if and only if it is nonsingular and has four or two nonzero entries.

As is well known, Cauchy matrices are matrices of the form $C = [c_{ij}]$, where $c_{ij} = \frac{1}{x_i + y_j}$ for some numbers x_i and y_j . We shall restrict ourselves to square, say $n \times n$, Cauchy matrices. Of course, such matrices are defined only if $x_i + y_j \neq 0$ for all pairs of indices i, j, and it is well known that C is nonsingular if and only if all the numbers x_i are mutually distinct and all the numbers y_j are mutually distinct. In [2], the following theorem was proved.

Theorem 1.11. Every nonsingular Cauchy matrix C for which both vectors $C^{-1}e$ and $C^{-T}e$ have no coordinate zero is a G-matrix; here, e is the vector of all ones.

Let us recall [1, Observation 1] that the assumptions about the vectors $C^{-1}e$ and $C^{-T}e$ are superfluous. Indeed, it is well known that if $C = \frac{1}{x_i + y_i}$, then the inverse $C^{-1} = [\gamma_{ij}]$, where

$$\gamma_{ij} = (x_j + y_i) \frac{\prod_{\ell \neq i} (x_j + y_\ell) \prod_{k \neq j} (y_i + x_k)}{\prod_{\ell \neq j} (x_j - x_\ell) \prod_{k \neq i} (y_i - y_k)}.$$
(1)

The right-hand side of (1) can be written as $\frac{1}{x_i+v_i}U_jV_i$, where

$$U_{j} = (x_{j} + y_{j}) \prod_{k \neq j} \frac{x_{j} + y_{k}}{x_{j} - x_{k}},$$
(2)

$$V_{i} = (x_{i} + y_{i}) \prod_{k \neq i} \frac{y_{i} + x_{k}}{y_{i} - y_{k}}.$$
(3)

If we thus define the diagonal matrices D_1 , D_2 as $D_1 = \text{diag}(U_1, \ldots, U_n)$, $D_2 = \text{diag}(V_1, \ldots, V_n)$, then indeed $(C^T)^{-1} = D_1 C D_2$. Thus C is a G-matrix.

2. Results

Let us start with the following observation.

Download English Version:

https://daneshyari.com/en/article/6416700

Download Persian Version:

https://daneshyari.com/article/6416700

Daneshyari.com