

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

Inequalities for absolute value operators

Limin Zou a,c, Chuanjiang He a,b,*, Shahid Qaisar a

- ^a College of Mathematics and Statistics, Chongqing University, Chongqing 401331, PR China
- b Mathematical Sciences Research Institute in Chongqing, Chongqing University, Chongqing 401331, PR China
- ^c School of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing 404100, PR China

ARTICLEINFO

Article history: Received 5 May 2012 Accepted 10 August 2012 Available online 27 September 2012

Submitted by C.-K. Li

AMS classification: 47A63

Keywords:

Dunkl-Williams inequality Operator inequalities Operator absolute value

ABSTRACT

We present refinements of an inequality which is due to Saito and Tominaga [Linear Algebra Appl. 432 (2010) 3258–3264], and other inequalities for absolute value operators.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this note we mainly adopt the notation and terminology in [1,2]. For convenience, recall that, as usual, let B(H) be the algebra of all bounded linear operators on a complex separable Hilbert space H. For $A \in B(H)$, we denote by |A| the absolute value operator of A, that is, $|A| = (A^*A)^{\frac{1}{2}}$, where A^* is the adjoint operator of A. A self-adjoint operator $A \in B(H)$ is said to be positive if $(Ax, x) \geq 0$ for all $x \in H$. We write $A \geq 0$ if A is positive. We denote by [AH] the closure of AH and by $P_{[AH]}$ the orthogonal projection onto [AH]. Let A = U|A| be the polar decomposition of $A \in B(H)$ with $U^*U = P_{[|A|H]}$. Throughout this note, we assume that P, P and P and

Let $A, B \in B(H)$ with polar decomposition A = U|A| and B = V|B|. By using operator Bohr inequality [3, Corollary 1], Saito and Tominaga [1, Theorem 2.3] obtained an inequality for absolute value operators as follows:

$$|(U-V)|A||^2 \le p|A-B|^2 + q(|A|-|B|)^2. \tag{1.1}$$

^{*} Corresponding author at: College of Mathematics and Statistics, Chongqing University, Chongqing 401331, PR China. *E-mail address*: chuanjianghe@sina.com (C. He).

It is a generalization of the following inequality:

$$|A|A|^{-1} - B|B|^{-1}|^2 \le |A|^{-1}(p|A - B|^2 + q(|A| - |B|)^2)|A|^{-1}, \tag{1.2}$$

which is due to Pečarić and Rajić [2, Theorem 2.1]. As a consequence of the inequality (1.2), Pečarić and Rajić [2, Corollary 2.3] gave a Dunkl–Williams type inequality for absolute value operators:

$$|A|A|^{-1} - B|B|^{-1}| \le (|A|^{-1}(2|A - B|^2 + 2(|A| - |B|)^2)|A|^{-1})^{\frac{1}{2}}.$$

For more information on the well-known Dunkl–Williams inequality [4] and operator versions of the Dunkl–Williams inequality, the reader is referred to [1,2,5–7] and the references therein.

In this note, we give refinements of the inequality (1.1) and lower estimates for $|(U-V)|A||^2$.

2. Main results

We begin this section with the following result.

Theorem 2.1. Let $A, B \in B(H)$ with polar decomposition A = U|A| and B = V|B|. If p, q > 1, then

$$|(U-V)|A||^{2} < |A-B|^{2} + (|A|-|B|)^{2} - (T+T^{*}) < p|A-B|^{2} + q(|A|-|B|)^{2},$$
 (2.1)

where

$$T = (|A| - |B|)V^*(A - B).$$

Proof. Since $V^*V < I$, we have

$$\begin{aligned} |(U-V)|A||^2 &= |A-B-V(|A|-|B|)|^2 \\ &= |A-B|^2 + |V(|A|-|B|)|^2 - (T+T^*) \\ &= |A-B|^2 + (|A|-|B|)V^*V(|A|-|B|) - (T+T^*) \\ &\leq |A-B|^2 + (|A|-|B|)^2 - (T+T^*). \end{aligned}$$

This proves the first part of (2.1).

Next, we prove the second part of (2.1). By a small calculation we know that

$$\frac{q}{p} = q - 1, \qquad \frac{p}{q} = p - 1,$$

and so

$$\begin{aligned} p|A - B|^2 &+ q(|A| - |B|)^2 - (|A - B|^2 + (|A| - |B|)^2 - (T + T^*)) \\ &= (p - 1)|A - B|^2 + (q - 1)(|A| - |B|)^2 + (T + T^*) \\ &\geq (p - 1)|A - B|^2 + (q - 1)|V(|A| - |B|)|^2 + (T + T^*) \\ &= \left|\sqrt{p - 1}(A - B) + \sqrt{q - 1}V(|A| - |B|)\right|^2 \\ &\geq 0. \end{aligned}$$

This completes the proof. \Box

Remark 2.1. Obviously, the inequality (2.1) is a refinement of the inequality (1.1).

Remark 2.2. Interchanging the operators *A* and *B* in the inequality (2.1), we have

$$|(U - V)|B||^2 < |A - B|^2 + (|A| - |B|)^2 - (T + T^*) < p|A - B|^2 + q(|A| - |B|)^2,$$

Download English Version:

https://daneshyari.com/en/article/6416740

Download Persian Version:

https://daneshyari.com/article/6416740

<u>Daneshyari.com</u>