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The paper provides the construction of association scheme on the

subspaces of type(ν + k, 0, k) in singular symplectic geometry over

finite fields. All intersection numbers of the scheme are computed.

At last, an authentication code with perfect secrecy from the associ-

ation scheme is construction.
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1. Introduction

In this section, we shall introduce the concepts of singular symplectic geometry over finite fields,

association scheme, and then introduce our main result. Notation and terminology will be adopted

from [1,2]. We always assume that

Kl =

⎛
⎜⎜⎜⎝

0 I(ν)

−I(ν) 0

0(l)

⎞
⎟⎟⎟⎠

and

K =
⎛
⎝ 0 I(ν)

−I(ν) 0

⎞
⎠
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where Kl is (2ν + l) × (2ν + l) alternate matrix, and K is 2ν × 2ν alternate matrix. Let P be an

m-dimensional vector subspace of F
(n)
q , then wewrite dim P=m. Let v1, v2, . . . , vm be a basis of P. We

notice that v1, v2, . . . , vm are vectors in F
(n)
q . We usually use them × nmatrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2
...

vm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

to represent the vector subspace spanned by the vectors v1, v2, . . . , vm, write

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2
...

vm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Denote the number of m × nmatrices of rank r over Fq by N(r,m × n).
Singular symplectic geometry over finite fields is introduced in [1]. Let Fq be the finite field with q

elements, where q is a power of a prime, n = 2ν + l . The set of all (2ν + l) × (2ν + l) nonsingular
matrices T over Fq satisfying TKlT = Kl forms a group, called the singular symplectic group of degree

2ν + l and index ν over Fq, denoted by Sp2ν+l,ν(Fq). We have an action of Sp2ν+l,ν(Fq) on F
(2ν+l)
q

defined as follows:

F
(2ν+l)
q × Sp2ν+l,ν(Fq) → F

(2ν+l)
q

((x1 · · · , xν · · · , x2ν+l), T) �→ (x1 · · · , xν · · · , x2ν+l)T

The the vector space F
(2ν+l)
q together with the above action of the group SP2ν+l,ν (Fq) is called the

2ν + l-dimensional singular symplectic space over Fq.

Let ei(1 � i � 2ν + l) be the row vector in F
(2ν+l)
q whose i-th coordinate is 1 and all other coordi-

nates are 0. Denote by E the l-dimensional subspace of F
(2ν+l)
q generated by e2ν+1, e2ν+2, . . . , e2ν+l.

Anm-dimensional subspace P of F
(2ν+l)
q is called a subspace of type(m, s, k) if

(i) PKlP
t is cogredient toM(m, s), and

(ii) dim(P ∩ E) = k, where

M(m, s) =

⎛
⎜⎜⎜⎝

0 I(s)

−I(s) 0

0(m−2s)

⎞
⎟⎟⎟⎠
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