On the traces of elements of modular group

Bin Wang ${ }^{\text {a }}$, Xinyun Zhu ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Changshu Institute of Technology, Changshu 215500, China
${ }^{\text {b }}$ Department of Mathematics, University of Texas of the Permian Basin, Odessa, TX 79762, United States

ARTICLEINFO

Article history:

Received 6 July 2012
Accepted 12 July 2012
Available online 2 September 2012
Submitted by R.A. Brualdi

Keywords:

BE polynomial
Trace
Modular group

ABSTRACT

We prove a conjecture by Bergweiler and Eremenko on the traces of elements of modular group in this paper.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Bergweiler and Eremenko made a remarkable conjecture on the traces of elements of modular group in [1]. The main result of this paper is to prove their conjecture. We expect this result to have future applications in some fields such as control theory.

Let $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right)$. These two matrices generate the free group which is called
$\Gamma(2)$, the principal congruence subgroup of level 2 . With arbitrary integers $m_{j} \neq 0, n_{j} \neq 0$, consider the trace of the product

$$
p_{k}\left(m_{1}, n_{1}, \ldots, m_{k}, n_{k}\right)=\operatorname{tr}\left(A^{m_{1}} B^{n_{1}} \cdots A^{m_{k}} B^{n_{k}}\right) .
$$

It is easy to see that p_{k} is a polynomial in $2 k$ variables with integer coefficients. This polynomial can be written explicitly though the formula is somewhat complicated.

Choosing an arbitrary sequence σ of $2 k$ signs \pm, we make a substitution

$$
p_{k}^{\sigma}\left(x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right)=p_{k}\left(\pm\left(1+x_{1}\right), \pm\left(1+y_{1}\right), \ldots, \pm\left(1+x_{k}\right), \pm\left(1+y_{k}\right)\right)
$$

Our main theorem is the following one. Which was conjectured by Bergweiler and Eremenko [1].

[^0]0024-3795/\$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.laa.2012.07.025

Theorem 1.1. The polynomial p_{k}, for every $k>0$, has the property that for every σ, all the coefficients of the polynomial p_{k}^{σ} are of the same sign, that is, the sequence of coefficients of p_{k}^{σ} has no sign changes.

We prove the theorem by induction on k. However it is not easy to pass from "level k " to "level $k+1$ " since that p_{k} has the above property does not simply imply that p_{k+1} has the same one. The idea here is to substitute p_{k} 's with a suitable set of polynomials containing the p_{k} 's so that the difficulty disappears. This idea is explained in Section 2 (see Proposition 2.2) and the theorem is showed in Section 3.

2. Traces

2.1. BE polynomials

Set

$$
F_{k}=\left(\begin{array}{ll}
f_{k} & h_{k} \\
t_{k} & g_{k}
\end{array}\right)=A^{x_{1}} B^{y_{1}} A^{x_{2}} B^{y_{2}} \cdots A^{x_{k}} B^{y_{k}}
$$

where $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right), B=\left(\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right)$. Then the trace $p_{k}=\operatorname{tr} F_{k}=f_{k}+g_{k}$ and all $f_{k}, h_{k}, t_{k}, g_{k}$ are the polynomials in $2 k$ variables $x_{1}, y_{1}, \ldots, x_{k}, y_{k}$ with integer coefficients whose explicit formula can be found in [1].

A sequence σ of $2 k$ signs \pm can be viewed as a function $\sigma:\{1,2, \ldots, 2 k\} \rightarrow\{1,-1\}$. For any polynomial f in variables $x_{1}, y_{1}, \ldots, x_{k}, y_{k}$, set

$$
f^{\sigma}=f\left(\sigma(1)\left(1+x_{1}\right), \sigma(2)\left(1+y_{1}\right), \ldots, \sigma(2 k-1)\left(1+x_{k}\right), \sigma(2 k)\left(1+y_{k}\right)\right)
$$

Definition 2.1. A polynomial f in $2 k$ variables is said to be a BE polynomial if for arbitrary sequence σ of $2 k$ signs, all the coefficients of f^{σ} have the same sign.

Let $\operatorname{Mat}(2,2)$ be the set of 2×2 matrices over \mathbf{R}, the set of real numbers. Denote by F_{k}^{σ} the matrix

$$
\begin{aligned}
\left(\begin{array}{cc}
f_{k}^{\sigma} & h_{k}^{\sigma} \\
t_{k}^{\sigma} & g_{k}^{\sigma}
\end{array}\right) . \text { If } M & =\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \in \operatorname{Mat}(2,2), \text { then } \\
\operatorname{tr}\left(F_{k} M\right) & =a f_{k}+b h_{k}+c t_{k}+d g_{k} \\
\operatorname{tr}\left(F_{k}^{\sigma} M\right) & =a f_{k}^{\sigma}+b h_{k}^{\sigma}+c t_{k}^{\sigma}+d g_{k}^{\sigma}
\end{aligned}
$$

Write

$$
\begin{aligned}
& A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right) \quad A_{3}=\left(\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right) \\
& A_{4}=\left(\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right) \quad A_{5}=\left(\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right) \quad A_{6}=\left(\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right) .
\end{aligned}
$$

Note that

$$
\begin{align*}
& A_{4}+A_{5}=4 A_{2}, A_{4}+A_{6}=4 A_{3}^{t}, A_{4}^{t}+A_{5}=4 A_{2}^{t}, A_{4}^{t}+A_{6}=4 A_{3}, A_{2}+A_{3}=4 A_{1}, \tag{2.1}\\
& A_{4}=-A^{-1} B^{-1}, A_{4}^{t}=-A B, A_{5}=A B^{-1}, A_{6}=A^{-1} B \tag{2.2}
\end{align*}
$$

Let S be a subset of $\operatorname{Mat}(2,2)$, we have

https://daneshyari.com/en/article/6416769

Download Persian Version:

https://daneshyari.com/article/6416769

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: binwang72@gmail.com (B. Wang), zhu_x@utpb.edu (X. Zhu).

