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Time–frequency analysis is central to signal processing, with standard adaptation 
to higher dimensions for imaging applications, and beyond. However, although 
the theory, methods, and algorithms for stationary signals are well developed, 
mathematical analysis of non-stationary signals is almost nonexistent. For a real-
valued signal defined on the time-domain R, a classical approach to compute its 
instantaneous frequency (IF) is to consider the amplitude–frequency modulated 
(AM–FM) formulation of its complex (or analytic) signal extension, via the 
Hilbert transform. In a popular paper by Huang et al., the so-called empirical 
mode decomposition (EMD) scheme is introduced to separate such a signal as a 
sum of finitely many intrinsic mode functions (IMFs), with a slowly oscillating 
signal as the remainder, so that more than one IFs of the given signal can be 
computed by extending each IMF to an AM–FM signal component. Based on the 
continuous wavelet transform (CWT), the notion of synchrosqueezing transform 
(SST), introduced by Daubechies and Maes in 1996, and further developed by 
Daubechies, Lu, and Wu (DLW) in a 2011 paper, provides another approach to 
extract more than one IFs of the signal on R. Furthermore, by introducing a list 
of fairly restrictive conditions on the adaptive harmonic model (AHM), the DLW 
paper also derives a theory for estimating the signal components according to this 
model, by using the IFs with estimates from the SST.
The objective of our present paper is to introduce another mathematical theory, 
along with rigorous methods and computational schemes, to achieve a more 
ambitious goal than the SST approach, first to extract the polynomial-like trend 
from the source signal, then to compute the exact number of signal components 
according to a less restrictive AHM model, then to obtain better estimates of the 
IFs and instantaneous amplitudes (IAs) of the signal components, and finally to 
separate the signal components from the (blind) source signal. Furthermore, our 
computational scheme can be realized in near-real-time, and our mathematical 
theory has direct extension to the multivariate setting.
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1. Introduction

Time–frequency analysis is central to practically all areas of “signal processing”; and extensions of time–
frequency representations, methods, and algorithms to higher dimensions are also used in most applications 
on imagery analysis and processing. In addition, time–frequency representation in terms of (discrete) co-
sine polynomials is adopted by audio, image, and video industry standards for (lossy) data compression, 
including: MP3 audio, JPEG image, as well as MPEG and H.264 videos. When a signal (or function) is 
represented by a cosine polynomial, such as

G(t) = a0 +
K∑

k=1

ak cos(2πkt), (1.1)

it is clear that G is a superposition of the signal components fk(t) = ak cos(2πkt), for k = 1, . . . , K, 
where the frequency of the component fk is ωk = k Hz. Such signals are called stationary signals, meaning 
that the frequencies ωk = k of G(t), with k = 1, . . . , K, do not change with the time variable t, where 
K may be considered as (an upper bound of) the bandwidth of the signal. However, real-world signals 
are mainly non-stationary, meaning that their frequencies may change with time. Unfortunately, while 
the mathematical theory of stationary signals is well developed, mathematical analysis of non-stationary 
signals is almost nonexistent. Although the concept of “time–varying frequencies” was already disclosed 
in the Bell System Technical Report [3], the pioneering work on non-stationary signal analysis is often 
attributed to the landmark paper [17] of Dennis Gabor, along with the paper [26] of Van der Pol, published 
in the same volume of J.IEE in 1946. In [17], for a given real-valued signal f(t) defined for t ∈ R, Gabor 
introduced the notion of the complex signal extension Gc = G + iHG (also called the “analytic signal 
extension” of f in the current signal processing literature), by applying the Hilbert transform H to G
over R. Hence, by writing the analytic signal Gc in its polar form, namely: Gc(t) = A(t) exp(i2πφ(t)) (called 
amplitude–frequency modulated (AM–FM) signal representation in the current signal processing literature), 
with A(t) ≥ 0, the given signal is represented by G(t) = A(t) cos(2πφ(t)), by taking the real part of the polar 
form of Gc(t). Consequently, it is natural to define the “instantaneous frequency” (IF) of the given signal 
by the derivative φ′(t) of the phase function φ(t). There have been other attempts to define instantaneous 
frequencies, particularly in the early 1990s, with perhaps the most popular ones based on the Wigner–Ville 
distribution method (see, in particular, [1,2]). However, all such definitions suffer the same defect as the 
above discussion, in that the definition applies to one and only one frequency value, φ′(t), of the given 
signal G(t) at the desired time instant t ∈ R. This is certainly unacceptable, since any of such definitions 
does not allow time–frequency analysis of just about all signals. After all, only the simple harmonic signal 
G(t) = A(t) cos(2πφ(t)) has one IF for any t ∈ R.

To allow for more than one frequencies, as in the stationary setting (1.1) with K > 1, N. Huang et 
al. [19,18] introduce a signal decomposition procedure, called the “empirical mode decomposition” (EMD) 
scheme, to decompose the given (non-stationary) signal G into a finite sum of “intrinsic mode functions” 
(IMFs) fj , with a slowly oscillating function T as the remainder, and apply the Hilbert transform H, as 
in [17], to extend each IMF fj to an AM–FM signal. In other words, for a given real-valued (stationary or 
non-stationary) signal G(t), by taking the real part of the Hilbert spectrum (that is, the sum of the AM–FM 
analytic signal extensions of fjs), the EMD of G(t) can be formulated as

G(t) = f(t) + T (t), (1.2)

with
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