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a b s t r a c t

We consider approximation problems for tensor product and
additive random fields based on standard information in the
average case setting. We also study the probabilistic setting of the
mentioned problem for tensor products. The main question we
are concerned with in this paper is ‘‘How much do we loose by
considering standard information algorithms against those using
general linear information?’’ For both types of the fields, the error
of linear algorithms has been studied in great detail; however, the
power of standard information was not addressed so far, which
we do here. Our main result is that in most interesting cases there
is no more than a logarithmic loss in approximation error when
information is being restricted to the standard one. The results are
obtained by randomization techniques.
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1. Introduction: general information against standard information

Let f be a function which we consider as an element of some Banach space (B, ∥ · ∥) of functions.
Assume that the whole function f is unknown but we are able to measure the values of some
functionals F1(f ), . . . , Fn(f ), such as values of f at certain points, its integrals, etc. Let Ψ : Rn

→ B be
some mapping. Then we may call

Af := Ψ (F1(f ), . . . , Fn(f ))

an approximation algorithm and define its error at f by ∥f − Af ∥. A typical problem setting assumes
minimization of the approximation error for given n by optimizing the choice of the set (Fj(·))1≤j≤n
within available class of functionals, as well as the choice of the mapping Ψ .

As for the target function f , we essentially have two options for problem setting. Either we can
let it vary over some set, typically some compact subset of B, for example, the unit ball of some
other Banach space compactly embedded into B, by taking the worst possible approximation error for
algorithm evaluation. Or we may consider f as a random function having certain distribution in B and
using the expectation of the error for algorithm evaluation. The two possibilities are often referred
to as the ‘‘worst case setting’’, resp. ‘‘average case setting’’. We will rather stick to the latter one and
consider random functions (or random fields, if their arguments are multivariate) as the objects of
approximation.

Let us now specify the problem furthermore.Wewill use aHilbert norm for error evaluation,which
essentially means B = L2([0, 1]d), where d is understood as appropriate parametric dimension of a
random fieldwe consider. It iswell known that for Hilbert norms theminimal average error is attained
on a linear algorithm, which means

Af =

n
j=1

Fj(f )φj,

where every Fj(·) is a linear functional on B and φj ∈ B are specific fixed elements. It is often said that
such algorithms are based on linear information.

Since this article deals only with Hilbert norms, we will only work with linear algorithms.
In many applications it is too costly to calculate values of arbitrary linear functionals needed for

such approximation. It is therefore preferable to restrict the choice of Fj(·) by letting Fj(f ) := f (tj),
i.e. by taking values of f at some points. One says that such algorithms are based on standard
information.

It is clear that algorithms based on linear information form a larger class than those based on
standard information, thus, after optimization, the average error would be smaller in linear case. The
main question we are concerned with in this paper is ‘‘How much do we loose by considering standard
information algorithms against those using general linear information?’’

This problem already received much interest, see [3,5,7,19] and especially the survey [14]. Most
of the research was concentrated on the worst case setting. It was shown that in many cases the
polynomial term of error decay (when considered as a function of the number n of functionals used)
is the same for algorithms based on linear and standard information. However, there exist caseswhere
the behavior of the error as a function of n for linear and standard information is drastically different.
It means that the problem we consider is by far non-trivial.

In this paperwe restrict investigation to one specific but very important class of averaging function
distributions, or, equivalently, random fields under consideration. Namely we consider tensor product
random fields and additive random fields. In short, tensor product random field on [0, 1]d is a zeromean
random field with covariance function

Kd(s, t) :=

d
l=1

K(sl, tl)

where s = (s1, . . . , sd), t = (t1, . . . , td) ∈ [0, 1]d, and K(·, ·) is a covariance function on [0, 1]2.
Brownian sheet, Brownian pillow, and other famous random fields belong to this class.
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