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a b s t r a c t

The primary goal of the paper is to develop average sampling on
bounded domains in Euclidean spaces. As an application of this
development we construct bandlimited and localized frames on
domains and describe a scale of Besov spaces in terms of frame co-
efficients.
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1. Introduction

Average sampling for bandlimited functions in L2(R) was initiated in [8] and then further de-
veloped in [2,1,3,19,20,25,26]. In the case of Riemannian manifolds without boundary the average
sampling was introduced and analyzed in [21–24]. In this paper we consider average sampling for a
particularly interesting class of manifolds with boundaries: bounded domains with smooth bound-
aries in Euclidean spaces. The corresponding spaces of ‘‘bandlimited’’ functions are defined as
eigenspaces of an appropriate elliptic differential operator with Dirichlet boundary conditions. We
use our development to construct bandlimited and localized frames on bounded domains.

Let Ω ⊂ Rd be a domain with a smooth boundary Γ . In the space L2(Ω) we consider a strictly
elliptic self-adjoint positive definite operator L generated by an expression

Lf = −

d
k,i=1

∂xk
(ak,i(x)∂xi f ), (1.1)
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with zero boundary condition. This way we obtain a self-adjoint positive definite operator in the
Hilbert space L2(Ω) with a discrete spectrum 0 < λ1 ≤ λ2 ≤ · · ·, which goes to infinity. Let {uj}

be a corresponding set of eigenfunctions which forms an orthonormal basis of L2(Ω).

Definition 1. The notation E[σ ,ω](L), 0 ≤ σ < ω, will be used for the span of all eigenfunctions uj
whose corresponding eigenvalues λj belong to [σ , ω]. It will be called the space of functions bandlim-
ited to [σ , ω]. In the case σ = 0 the notation Eω(L) will be used.

In Section 3 we develop average sampling in spaces of bandlimited functions Eω(L), ω > 0. As a
first step we prove in Lemma 3.1 a generalized version of the Poincaré inequality. Namely, it is shown
that if U ⊂ Q (ρ) where Q (ρ) is a standard cube of diameter ρ and dµ is a positive measure on the
set U then for any f in the Sobolev space Hm (Q (2ρ)) , m > d/2, one hasf −

1
|U|


U
fdµ

2
L2(U)

≤ C


1≤|α|≤m

ρ2α
∥∂α f ∥2

L2(Q (2ρ)), |U| =


U
dµ, (1.2)

where C is independent on f ; α = (α1, . . . , αd), ∂
α f = ∂

α1
x1 · · · ∂

αd
xd f is a partial derivative of order

|α| = α1 + · · · + αd, and L2(U) = L2(U, dx) where dx is the regular Lebesgue measure.

Remark 1.1. Note that in the case of the regular Poincaré inequality one hasf −
1

|U|


U
fdx
2
L2(U)

≤ C∥∇f ∥2
L2(U), f ∈ H1(U),

i.e. there are just first derivatives on the right side of the corresponding inequality. However, it is
impossible to reduce the order of the derivatives in our case since our inequality includes, for example,
the Dirac measure dµ = δx, x ∈ U, which requires at least continuity of the function f and it is
guaranteed by the conditionm > d/2.

Next, we prove in Theorem 3.4 that every function in a subspace Eω(L), ω > 0 is uniquely deter-
mined by its average values over ‘‘small’’ subsets ‘‘uniformly’’ distributed over the domainΩ . This fact
leads to a construction of an ‘‘almost tight’’ Hilbert frame in each subspace Eω(L), ω > 0.

It is important to note that in Lemma 3.3which provides discretization of the norm in a space Eω(L)
the number of ‘‘samples’’ Φi(f ) is approximately Vol(Ω)ωd/2, which according to Weyl’s asymptotic
formula is essentially the dimension of the space Eω(L) because (see [15])

dim Eω(L) ∼ Vol(Ω)ωd/2.

In this sense Lemma 3.3 is optimal.
In Section 4 we construct a set of projectors (not orthogonal)

Fj : L2(Ω) → E[22j−2,22j+2](L)

such that for every f ∈ L2(L)

∥f ∥2
=


j∈N

∥Fjf ∥2.

By applying Theorem 3.4 we obtain existence of an ‘‘almost tight’’ bandlimited frame in L2(Ω)
(Theorem 4.1).

Moreover, in Section 5 we prove that every function in our frame has very strong localization on
the manifold (Theorem 5.2).

Thus we construct a frame {ϕj,i}, j = 0, 1, 2, . . . , i = 1, 2, . . . , Ij, in the space L2(Ω) which has
the following distinguished properties:

1. frame constants are close to one;
2. every frame member ϕj,i is bandlimited, i.e. ϕj,i ∈ E[22j−2,22j+2](L);
3. if j ∈ N is large enough then frame function ϕj,i looks ‘‘almost’’ like a delta function.
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