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Abstract

We study the large-time behavior of solutions to the compressible Navier–Stokes equations for a viscous 
and heat-conducting ideal polytropic gas in the one-dimensional half-space. A rarefaction wave and its su-
perposition with a non-degenerate stationary solution are shown to be asymptotically stable for the outflow 
problem with large initial perturbation and general adiabatic exponent.
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1. Introduction

The one-dimensional motion of a compressible viscous and heat-conducting gas in the half-
space R+ := (0, ∞) can be formulated by the compressible Navier–Stokes equations

⎧⎨
⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + P)x = (μux)x,

(ρE)t + (ρuE + uP )x = (κθx + μuux)x,

(1.1)

where t > 0 and x ∈R+ stand for the time variable and the spatial variable, respectively, and the 
primary dependent variables are the density ρ, the velocity u and the temperature θ . The specific 
total energy E = e + 1

2u2 with e being the specific internal energy. It is known from thermo-
dynamics that only two of the thermodynamic variables ρ, θ , P (pressure), e and s (specific 
entropy) are independent. We focus on the ideal polytropic gas, which is expressed in normal-
ized units by the following constitutive relations

P = Rρθ, e = cvθ, s = cv ln(ρ1−γ θ), (1.2)

where R > 0 is the gas constant, γ > 1 the adiabatic exponent and cv = R/(γ − 1) the specific 
heat at constant volume. Positive constants μ and κ are the viscosity and the heat conductivity, 
respectively.

The system (1.1)–(1.2) is supplemented with the initial condition

(ρ,u, θ)|t=0 = (ρ0, u0, θ0), (1.3)

which is assumed to satisfy the far-field condition

lim
x→∞(ρ0, u0, θ0)(x) = (ρ+, u+, θ+), (1.4)

where ρ+ > 0, u+ and θ+ > 0 are constants. For boundary conditions, we take

(u, θ)(t,0) = (u−, θ−), (1.5)

where u− and θ− > 0 are constants. The initial data (1.3) is assumed to satisfy certain compati-
bility conditions as usual.

The boundary condition u(t, 0) = u− < 0 means that the fluid blows out from the bound-
ary, and hence the initial boundary value problem (1.1)–(1.5) with u− < 0 is called the outflow 
problem. The problem (1.1)–(1.5) with u− = 0 is called the impermeable wall problem, which 
has been studied in [6,7,20,21,31] and so on. According to the theory of well-posedness for 
initial boundary value problem, one has to impose one extra boundary condition ρ(t, 0) = ρ−
on {x = 0} for the case when u− > 0. This case is called the inflow problem and has been in-
vestigated by Matsumura et al. [4,6,9,22,27,28]. We refer to Matsumura [19] for a complete 
classification about the large-time behaviors of solutions to initial boundary value problems of 
the isentropic compressible Navier–Stokes equations in the half-space R+.

The main purpose of this article is to study the large-time behavior of solutions to the out-
flow problem (1.1)–(1.5). The nonlinear stability of the stationary solution, the rarefaction wave 
and their composition has been addressed in [15,26] under small initial perturbation. For large 
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