

Available online at www.sciencedirect.com

J. Differential Equations 261 (2016) 6178-6220

Journal of Differential Equations

www.elsevier.com/locate/jde

Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity *

Yi He

School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan, 430074, PR China Received 16 April 2016; revised 16 July 2016

Available online 6 September 2016

Abstract

We are concerned with the following Kirchhoff type equation:

$$\begin{cases} -\left(\varepsilon^2 a + \varepsilon b \int_{\mathbb{R}^3} |\nabla u|^2\right) \Delta u + V(x)u = f(u) \text{ in } \mathbb{R}^3,\\ u > 0, \ u \in H^1(\mathbb{R}^3), \end{cases}$$

where ε is a small positive parameter, a, b > 0. Under general conditions on f due to Zhang et al. (2014) [37], we construct a family of positive solutions $u_{\varepsilon} \in H^1(\mathbb{R}^3)$ which concentrates around the local minima of V as $\varepsilon \to 0$. Our result completes the study made in Figueiredo et al. (2014) [10] in the sense that, only the subcritical growth was considered.

© 2016 Elsevier Inc. All rights reserved.

MSC: 35J20; 35J60; 35J92

Keywords: Existence; Concentration; Kirchhoff type equation; Critical growth

E-mail address: heyi19870113@163.com.

^{*} This work is supported by "the Fundamental Research Funds for the Central Universities", South-Central University for Nationalities (Grant No. CZW 15123).

http://dx.doi.org/10.1016/j.jde.2016.08.034 0022-0396/© 2016 Elsevier Inc. All rights reserved.

1. Introduction and main result

We study the following Kirchhoff type equation:

$$\begin{cases} -\left(\varepsilon^2 a + \varepsilon b \int\limits_{\mathbb{R}^3} |\nabla u|^2\right) \Delta u + V(x)u = f(u) \text{ in } \mathbb{R}^3,\\ u > 0, \ u \in H^1(\mathbb{R}^3), \end{cases}$$
(1.1)

where ε is a small positive parameter, a, b > 0 and the potential $V : \mathbb{R}^3 \to \mathbb{R}$ is a continuous function satisfying:

(V₁) $\inf_{x \in \mathbb{R}^3} V(x) = \alpha > 0;$ (V₂) There is a bounded domain Λ such that

$$V_0 := \inf_{\Lambda} V < \min_{\partial \Lambda} V$$

and we set $\mathcal{M} := \{x \in \Lambda; V(x) = V_0\}$. This kind of hypothesis was first introduced by M. del Pino and P.L. Felmer in [26]. The nonlinearity $f : \mathbb{R} \to \mathbb{R}$ is a continuous function. Since we are looking for positive solutions, we may assume that f(s) = 0 for s < 0. Furthermore, we need the following conditions:

 $(f_1) \lim_{t \to 0^+} f(t)/t = 0;$

$$(f_2) \lim_{t \to +\infty} f(t)/t^5 = \kappa > 0;$$

(f₃) $\exists \lambda > 0$ and 2 < q < 6 such that $f(t) \ge \lambda t^{q-1} + t^5$ for $t \ge 0$.

 $(f_1)-(f_3)$ were first introduced by J. Zhang, Z. Chen, W. Zou [37] and can be regarded as an extension of the celebrated Berestycki–Lions' type nonlinearity (see [4,5]) to the critical growth. And we note that $f(t) = \lambda t^{q-1} + t^5 (2 < q < 6)$ is a special case of $(f_1)-(f_3)$.

Remark. Without loss of generality, in the present paper, we assume that $\kappa = 1$ and $0 \in \mathcal{M}$.

Problem (1.1) is a variant type of the following Dirichlet problem of Kirchhoff type

$$\begin{cases} -\left(a+b\int_{\Omega}|\nabla u|^{2}\right)\Delta u = f(x,u) \text{ in }\Omega,\\ u = 0 \text{ on }\partial\Omega, \end{cases}$$
(1.2)

where $\Omega \subset \mathbb{R}^3$ is a smooth domain. Such problems are often referred to be nonlocal because of the presence of the term $(\int_{\Omega} |\nabla u|^2) \Delta u$ which implies that the equation (1.2) is no longer a pointwise identity. This phenomenon provokes some mathematical difficulties, which make the study of such a class of problems particularly interesting. On the other hand, problem (1.2) is related to the stationary analogue of the equation Download English Version:

https://daneshyari.com/en/article/6417001

Download Persian Version:

https://daneshyari.com/article/6417001

Daneshyari.com