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Abstract

We consider a thin and narrow rectangular plate where the two short edges are hinged whereas the two 
long edges are free. This plate aims to represent the deck of a bridge, either a footbridge or a suspension 
bridge. We study a nonlocal evolution equation modeling the deformation of the plate and we prove exis-
tence, uniqueness and asymptotic behavior for the solutions for all initial data in suitable functional spaces. 
Then we prove results on the stability/instability of simple modes motivated by a phenomenon which is 
visible in actual bridges and we complement these theorems with some numerical experiments.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

We consider a thin and narrow rectangular plate where the two short edges are hinged whereas 
the two long edges are free. This plate aims to represent the deck of a bridge, either a footbridge 
or a suspension bridge. In absence of forces, the plate lies flat horizontally and is represented 
by the planar domain � = (0, π) × (−l, l) with 0 < l � π . The plate is subject to dead and 
live loads acting orthogonally on �: these loads can be either pedestrians, vehicles, or the vortex 
shedding due to the wind. The plate is also subject to edge loads, also called buckling loads, that 
are compressive forces along the edges: this means that the plate is subject to prestressing.

We follow the plate model suggested by Berger [6]; see also the previous beam model sug-
gested by Woinowsky-Krieger [31] and, independently, by Burgreen [8]. Then, the nonlocal 
evolution equation modeling the deformation of the plate reads

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Utt + δUt + �2U − φ(U)Uxx = F in � × (0, T )

U = Uxx = 0 on {0,π} × [−l, l]
Uyy + σUxx = Uyyy + (2 − σ)Uxxy = 0 on [0,π] × {−l, l}

U(x, y,0) = U0(x, y), Ut (x, y,0) = V0(x, y) in �

(1)

where the nonlinear term φ is defined by

φ(U) = −P + S

∫
�

U2
x ,

and carries a nonlocal effect into the model. Here S > 0 depends on the elasticity of the material 
composing the deck, S

∫
�

U2
x measures the geometric nonlinearity of the plate due to its stretch-

ing, and P > 0 is the prestressing constant: one has P > 0 if the plate is compressed and P < 0
if the plate is stretched. The constant σ is the Poisson ratio: for metals its value lies around 0.3
while for concrete it is between 0.1 and 0.2. We assume throughout this paper that

0 < σ <
1

2
. (2)

The function F : � × [0, T ] → R represents the vertical load over the deck and may depend on 
time while δ is a damping parameter. Finally U0 and V0 are, respectively, the initial position and 
velocity of the deck. The boundary conditions on the short edges are named after Navier [24]
and model the fact that the plate is hinged in connection with the ground; note that Uxx = �U on 
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