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Abstract

We consider perturbed pendulum-like equations on the cylinder of the form ẍ + sin(x) =
ε
∑m

s=0 Qn,s(x) ẋs where Qn,s are trigonometric polynomials of degree n, and study the number of limit 
cycles that bifurcate from the periodic orbits of the unperturbed case ε = 0 in terms of m and n. Our first 
result gives upper bounds on the number of zeros of its associated first order Melnikov function, in both the 
oscillatory and the rotary regions. These upper bounds are obtained expressing the corresponding Abelian 
integrals in terms of polynomials and the complete elliptic functions of first and second kind. Some further 
results give sharp bounds on the number of zeros of these integrals by identifying subfamilies which are 
shown to be Chebyshev systems.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The so-called Hilbert’s 16th Problem was proposed by David Hilbert at the Paris conference 
of the International Congress of Mathematicians in 1900. The problem is to determine the upper 
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bound for the number of limit cycles in two-dimensional polynomial vector fields of degree d , 
and to investigate their relative positions, see [11,15]. There is also a weaker version, the so-called 
infinitesimal or tangential Hilbert’s 16th Problem, proposed by Arnold, which can be stated in 
the following way: let ω be a real 1-form with polynomial coefficients of degree at most d , 
and consider a polynomial H of degree d + 1. A closed connected component of a level curve 
of H = h, denoted by γh, is called an oval of H . These ovals form continuous families. The 
infinitesimal Hilbert’s 16th Problem then asks for an upper bound V (d) of the number of real 
zeros of the Abelian integral

I (h) =
∫
γh

ω.

The bound should be uniform with respect to the polynomial H , the family of ovals {γh} and the 
form ω, i.e. it should only depend on the degree d , cf. [11,10]. The existence of V (d) goes back 
to the works of Khovanskii and Varchenko [14,21]. Recently an explicit (non realistic) bound for 
V (d) has been given in [2] by Binyamini, Novikov and Yakovenko.

There is a beautiful relationship between limit cycles and zeros of Abelian integrals: Consider 
a small deformation of a Hamiltonian vector field

Xε = XH + εY,

where XH = −Hy∂x +Hx∂y , Y = P∂x +Q∂y and ε > 0 is a small parameter. Denote by d(h, ε)
the displacement function of the Poincaré map of Xε and consider its power series expansion 
in ε. The coefficients in this expansion are called Melnikov functions Mk(h). Therefore, the 
limit cycles of the vector field correspond to isolated zeros of the first non-vanishing Melnikov 
function. A closed expression of the first Melnikov function M1(h) = I (h) was obtained by 
Pontryagin which is given by the Abelian integral

I (h) =
∫
γh

ω, with ω = P dy − Qdx.

Hence the number of isolated zeros of I (h), counting multiplicity, provide an upper bound 
for the number of ovals of H that generate limit cycles of Xε for ε close to zero. The coeffi-
cients of P and Q are considered as parameters, and so I (h) splits into a linear combination 
I (h) = α0I0(h) + · · · + α�I�(h), for some � ∈ N, where the coefficients αk depend on initial 
parameters and Ik(h) are Abelian integrals with some ωk = xikyjk dx. Therefore, the problem of 
finding the maximum number of isolated zeros of I (h) is equivalent to finding an upper bound 
for the number of isolated zeros of any function belonging to the vector space generated by 
Ij (h), j = 0, . . . �. This equivalent problem becomes easier when the basis of this vector space 
is a Chebyshev system, see Section 3 for details.

We are interested in these considerations because we want to analyze in terms of m and n the 
number of periodic orbits for perturbed pendulum-like equations of the form

ẍ + sin(x) = ε

m∑
s=0

Qn,s(x) ẋs , (1)
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