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Abstract

In this paper, we first prove the local well-posedness of the 2-D incompressible Navier–Stokes equations 
with variable viscosity in critical Besov spaces with negative regularity indices, without smallness assump-

tion on the variation of the density. The key is to prove for p ∈ (1, 4) and a ∈ Ḃ

2
p

p,1(R2) that the solution 

mapping Ha : F �→ ∇� to the 2-D elliptic equation div
(
(1 + a)∇�

) = divF is bounded on Ḃ
2
p

−1

p,1 (R2). 
More precisely, we prove that

‖∇�‖
Ḃ
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.

The proof of the uniqueness of solution to (1.2) relies on a Lagrangian approach [15–17]. When the viscosity 
coefficient μ(ρ) is a positive constant, we prove that (1.2) is globally well-posed.
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1. Introduction

In this paper, we study the Cauchy problem of the 2-D incompressible Navier–Stokes equa-
tions with variable viscosity in critical Besov spaces

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tρ + u · ∇ρ = 0,

∂t (ρu) + div(ρu ⊗ u) − div
(
2μ(ρ)M(u)

) + ∇� = 0,

divu = 0,

(ρ,u)|t=0 = (ρ0, u0),

(1.1)

where ρ and u = (u1, u2) stand for the density and velocity field, M(u) = 1
2 (∂iuj + ∂jui), 

� is a scalar pressure function, the viscosity coefficient μ(ρ) is smooth, positive on [0, ∞). 
Throughout, we assume that the space variable x belongs to the whole space R2.

Global weak solutions with finite energy to system (1.1) were first obtained by the Russian 
school [6] in the case when μ(ρ) = μ > 0 and ρ0 is bounded away from 0. We also refer to [24]
for an overview of results on weak solutions and to [18–20] for some improvements. However, 
the uniqueness of weak solutions is not known in general. When μ(ρ) = μ > 0 and ρ0 is bounded 
away from 0, Ladyzhenskaya and Solonnikov [23] initiated the studies for unique solvability of 
system (1.1) in a bounded domain � with homogeneous Dirichlet boundary condition for u. 
Similar results were established by Danchin [11] in the whole space Rn with initial data in the 
almost critical Sobolev spaces. On the other hand, from the viewpoint of physics, it is interesting 
to study the case for which density is discontinuous. Recently, Danchin and Mucha [17] proved 
by using a Lagrangian approach that the system (1.1) has a unique local solution with initial data 
(ρ0, u0) ∈ L∞(Rn) ×H 2(Rn) if initial vacuum dose not occur, see also some improvements and 
generalizations in [21,22,25].

On the other hand, if the density ρ is away from zero, we denote by a def= 1
ρ

− 1 and μ̃(a) def=
μ( 1

1+a
) so that the system (1.1) can be equivalently reformulated as

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ta + u · ∇a = 0,

∂tu + u · ∇u − (1 + a)
{
div

(
2μ̃(a)M(u)

) − ∇�
} = 0,

divu = 0,

(a,u)|t=0 = (a0, u0).

(1.2)

Just as the classical Navier–Stokes equations, the system (1.2) also has a scaling. Indeed, if (a, u)

solves (1.2) with initial data (a0, u0), then for any λ > 0,

(a,u)λ(t, x)
def= (a(λ2t, λx), λu(λ2t, λx))

also solves (1.2) with initial data (a0(λ·), λu0(λ·)). Moreover, the norm of (a0(λ·), λu0(λ·)) is 

independent of λ in the so-called critical spaces Ḃ
2
p

p,1(R
2) × Ḃ

2
p

−1

p,1 (R2). In resent ten years, 
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