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Abstract

For small ε > 0, the system ẋ = ε, ż = h(x, z, ε)z, with h(x, 0,0) < 0 for x < 0 and h(x, 0,0) > 0 for 
x > 0, admits solutions that approach the x-axis while x < 0 and are repelled from it when x > 0. The 
limiting attraction and repulsion points are given by the well-known entry–exit function. For h(x, z, ε)z

replaced by h(x, z, ε)z2, we explain this phenomenon using geometric singular perturbation theory. We 
also show that the linear case can be reduced to the quadratic case, and we discuss the smoothness of the 
return map to the line z = z0, z0 > 0, in the limit ε → 0.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the slow–fast planar system

ẋ = εf (x, z, ε), (1.1)

ż = g(x, z, ε)z, (1.2)
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with x ∈R, z ∈R,

f (x,0,0) > 0; g(x,0,0) < 0 for x < 0 and g(x,0,0) > 0 for x > 0. (1.3)

For ε = 0, the x-axis consists of equilibria; see Fig. 1.2(a) below. These equilibria are nor-
mally attracting for x < 0 and normally repelling for x > 0. For ε > 0, the x-axis remains 
invariant, and the flow on it is to the right. For small ε > 0, a solution that starts at (x0, z0), 
with x0 negative and z0 > 0 small, is attracted quickly toward the x-axis, then drifts to the right 
along the x-axis, and finally is repelled from the x-axis. It reintersects the line z = z0 at a point 
whose x-coordinate we denote by pε(x0). As ε → 0, the return map pε(x0) approaches a func-
tion p0(x0) given implicitly by the formula

p0(x0)∫
x0

g(x,0,0)

f (x,0,0)
dx = 0. (1.4)

In other words, the solution does not leave the x-axis as soon as it becomes unstable at x = 0; 
instead the solution stays near the x-axis until a repulsion has built up to balance the attraction 
that occurred before x = 0. The function p0 is called the entry–exit [1] or way in–way out [5]
function.

This phenomenon, in which a solution of a slow–fast system stays near a curve of equilibria 
of the slow limit system after it has become unstable, and leaves at a point given by an integral 
like (1.4), has been called “Pontryagin delay” [12] or “bifurcation delay” [2]. As far as we know, 
it was originally discovered in a different context, in which the fast variable z in (1.2) is two-
dimensional and, for ε = 0, the equilibrium at z = 0 undergoes a Hopf bifurcation as x passes 0; 
see [15], which was written under the direction of Pontryagin. In this situation, it turns out that 
the delay phenomenon need not occur if the system is not analytic. See [13] for a recent survey.

For the system (1.1)–(1.3), Pontryagin delay and the entry–exit function are discussed in [12,
9,14,4]. Methods include asymptotic expansions [12,9], comparison to solutions constructed by 
separation of variables [14], and direct estimation of the solution and its derivatives using the 
variational equation [4]. The last paper gives the most complete results.

Note that for the system (1.1)–(1.3) with ε = 0, the line of equilibria along the x-axis loses 
normal hyperbolicity at the “turning point” x = 0. The blow-up method of geometric singular 
perturbation theory [7,10] is today the method of choice for understanding loss of normal hyper-
bolicity. However, unless nongenericity conditions are imposed at the turning point [6], neither 
spherical blow-up of the turning point nor cylindrical blow-up along the x-axis appears to help 
with this problem. Even in the nongeneric cases where blow-up does help, it probably does not 
yield optimal smoothness results.

Pontryagin delay is also encountered in the codimension-one bifurcation of slow–fast systems 
that gives rise to the solutions known as canards; see [1,5]. Consider for example the system

ẋ = εf (x, z) = ε(ax + bz + . . .), (1.5)

ż = g(x, z) = −(x + cz2 + . . .), (1.6)

with b and c positive. The omitted terms in the first equation are higher-order; those in the second 
consist of other quadratic terms and higher-order terms. This system is codimension-one in the 
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