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Abstract

We study internal null controllability for degenerate parabolic equations of Grushin-type Gγ = ∂2
xx +

|x|2γ ∂2
yy (γ > 0), in the rectangle (x, y) ∈ � = (−1, 1) × (0, 1).

Previous works proved that null controllability holds for weak degeneracies (γ small), and fails for strong 
degeneracies (γ large). Moreover, in the transition regime and with strip shaped control domains, a positive 
minimal time is required.

In this paper, we work with controls acting on two strips, symmetric with respect to the degeneracy. 
We give the explicit value of the minimal time and we characterize some initial data that can be steered to 
zero in time T (when the system is not null controllable): their regularity depends on the control domain 
and the time T .

We also prove that, with a control that acts on one strip, touching the degeneracy line {x = 0}, then 
Grushin-type equations are null controllable in any time T > 0 and for any degeneracy γ > 0.

Our approach is based on a precise study of the observability property for the one-dimensional heat equa-
tions satisfied by the Fourier coefficients in variable y. This precise study is done, through a transmutation 
process, on the resulting one-dimensional wave equations, by lateral propagation of energy method.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Main results

We consider Grushin-type equations

⎧⎪⎨⎪⎩
∂tf − ∂2

xxf − |x|2γ ∂2
yyf = u(t, x, y)1ω(x, y), (t, x, y) ∈ (0, T ) × �,

f (t, x, y) = 0, (t, x, y) ∈ (0, T ) × ∂�,

f (0, x, y) = f 0(x, y), (x, y) ∈ �,

(1.1)

where � := (−1, 1) × (0, 1), γ > 0 and 1ω denotes the characteristic function of the subset ω. 
It is a degenerate parabolic equation, since the coefficient of ∂2

yyf vanishes on the line {x = 0}. 
System (1.1) is a linear control system in which the state is f and the control is the locally 
distributed source term u. We are interested in its null controllability, in the following sense.

Definition 1.1 (Null controllability). Let T > 0 and ω ⊂ �. System (1.1) is null controllable 
from ω in time T if, for every f 0 ∈ L2(�, R), there exists u ∈ L2((0, T ) × �, R) such that the 
associated solution of (1.1) satisfies f (T , .,.) = 0.

System (1.1) is null controllable from ω if there exists T > 0 such that system (1.1) is null 
controllable from ω in time T .

In [6], Beauchard, Cannarsa and Guglielmi proved the following result.

Theorem 1.1. Let ω be an open subset of (−1, 1) × (0, 1) such that ω ⊂ (0, 1] × [0, 1].

1. If γ ∈ (0, 1), then system (1.1) is null controllable from ω in any time T > 0.
2. If γ = 1 and ω = (a, b) × (0, 1) where 0 < a < b � 1, then a positive minimal time is 

required for null controllability from ω; moreover

Tmin := inf{T > 0; system (1.1) is null controllable from ω in time T } (1.2)

satisfies Tmin � a2

2 .
3. If γ > 1, then system (1.1) is not null controllable from ω.

In particular, null controllability holds for weak degeneracies (0 < γ < 1), fails for strong 
degeneracies (γ > 1) and, in the transition regime (γ = 1), a positive minimal time is required.

The goal of the present article is to go further in this direction, and to give

• the explicit value of the minimal time Tmin,
• a characterization of initial conditions that can be steered to zero, when the system is not 

null controllable.
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