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Abstract

We consider a first-order aggregation model in both discrete and continuum formulations and show rig-
orously how it can be obtained as zero inertia limits of second-order models. In the continuum case the 
procedure consists in a macroscopic limit, enabling the passage from a kinetic model for aggregation to an 
evolution equation for the macroscopic density. We work within the general space of measure solutions and 
use mass transportation ideas and the characteristic method as essential tools in the analysis.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The focus of the present paper is a certain mathematical model for emerging self-collective 
behaviour in biological (and other) aggregations. There has been a surge of activity in this area of 
research during the past decade, and in fact the goals have extended well beyond biology. For bi-
ological applications, the primary motivation has been to understand and model the mechanisms 
behind the formation of the various spectacular groups observed in nature (fish schools, bird 
flocks, insect swarms) [11]. In terms of expansion of this research into collateral areas, we men-
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tion studies on robotics and space missions [27], opinion formation [33], traffic and pedestrian 
flow [23] and social networks [26].

Aggregation models can be classified in two main classes: i) individual/particle-based, where 
the movements of all individuals in the group are being tracked, and ii) partial differential equa-
tions (PDE) models, formulated as evolution equations for the population density field. We 
refer to [14] for a recent review of models for aggregation behaviour, where the various mi-
croscopic/macroscopic descriptions of collective motion are discussed and connected. In the 
present work we deal with a model that has both a discrete/ODE and a continuum/PDE for-
mulation.

The continuum aggregation model considered in this article is given by the following evolu-
tion equation for the population density ρ(t, x) in Rd :

ρt + ∇ · (ρu) = 0, (1.1a)

u = −∇K ∗ ρ, (1.1b)

where K represents an interaction potential and ∗ denotes convolution. The potential K typically 
incorporates social interactions such as short-range repulsion and long-range attraction. We con-
sider K to be radial, meaning that the inter-individual interactions are assumed to be isotropic.

Equation (1.1) appears in various contexts related to mathematical models for biological ag-
gregations; we refer to [32,36] and the references therein for an extensive background and review 
of the literature on this topic. It also arises in a number of other applications such as material 
science and granular media [37], self-assembly of nanoparticles [24] and molecular dynamics 
simulations of matter [22]. The model has become widely popular and there has been intensive 
research on it during recent years.

The particular appeal of model (1.1) has lain in part in its simple form, which allowed rapid 
progress in terms of both numerics and analysis. Numerical simulations demonstrated a wide 
variety of self-collective or “swarm” behaviours captured by model (1.1), resulting in aggrega-
tions on disks, annuli, rings, soccer balls, etc. [28,39,40]. Analysis-oriented studies addressed the 
well-posedness of the initial-value problem for (1.1) [9,10,30,5,13,6], as well as the long time 
behaviour of its solutions [10,31,17,4,20,19]. Also, there has been increasing interest lately on 
the analysis of (1.1) by variational methods [3,2,15].

Equation (1.1) is frequently regarded as the continuum approximation, when the number of 
particles increases to infinity, of the following individual-based model. Consider N particles in 
R

d whose positions xi (i = 1, . . . , N ) evolve according to the ODE system

dxi

dt
= vi, (1.2a)

vi = − 1

N

∑
j �=i

∇xi
K(xi − xj ), (1.2b)

where K denotes the same interaction potential as in (1.1).
Model (1.2) was justified and formally derived in [8], starting from the following second-order 

model in Newton’s law form (i = 1, . . . , N ):

ε
d2xi

dt2
+ dxi

dt
= Fi, with Fi = − 1

N

∑
j �=i

∇xi
K(xi − xj ), (1.3)



Download English Version:

https://daneshyari.com/en/article/6417149

Download Persian Version:

https://daneshyari.com/article/6417149

Daneshyari.com

https://daneshyari.com/en/article/6417149
https://daneshyari.com/article/6417149
https://daneshyari.com

