Classification and sharp range of flux-pairs for radial solutions to a coupled system

Zhi-You Chen *,1, Yong-Li Tang ${ }^{2}$
Department of Mathematics, National Central University, Chung-Li 32001, Taiwan
Received 10 February 2015; revised 23 March 2015
Available online 3 April 2015

Abstract

In this paper, we study a coupled system of two nonlinear partial differential equations in the plane, which is related to Liouville equations, non-abelian Higgs BPS vortex equations or two Higgs electroweak model, with singularities at the origin. In addition to deriving the uniqueness of the so-called topological solutions, we also clarify the structure of all types of solutions, including the blow-up ones, under various conditions on coefficients and parameters appearing in the system. Furthermore, the sharp range of flux-pairs associated with specific types of solutions is considered as well. © 2015 Elsevier Inc. All rights reserved.

MSC: primary 35J47; secondary 35A20
Keywords: Classification of solutions; Sharp range of flux-pairs; Coupled system

[^0]
1. Introduction

In this article, we study solutions of the following coupled system

$$
\left\{\begin{array}{l}
\Delta u=a e^{u}+b e^{v}-\gamma_{1}+4 \pi N_{1} \delta_{O} \tag{1.1}\\
\Delta v=b e^{u}+c e^{v}-\gamma_{2}+4 \pi N_{2} \delta_{O}
\end{array} \quad \text { in } \mathbf{R}^{2}\right.
$$

where $\Delta=\Sigma_{i=1}^{2} \partial^{2} / \partial x_{i}^{2}, O$ is the origin point of \mathbf{R}^{2}, and δ_{p} is the Dirac measure at p for $p \in \mathbf{R}^{2} ; a,-b$ and c are positive constants; N_{1} and N_{2} are non-negative constants; γ_{1} and γ_{2} are real numbers, and ($a, b, c, \gamma_{1}, \gamma_{2}$) satisfies

$$
\begin{equation*}
c \gamma_{1}-b \gamma_{2} \geq 0 \text { and } a \gamma_{2}-b \gamma_{1} \geq 0 . \tag{1.2}
\end{equation*}
$$

To our knowledge for this kind of systems, (1.1) without Dirac sources was studied for the first time by Chanillo and Kiessling in [18] for $\gamma_{1}=\gamma_{2}=0$. To cite other sources of (1.1), we consider the Bennett system for 1-component plasma:

$$
\begin{equation*}
\Delta \phi+4 \pi \frac{D q}{Z} e^{-\beta q(\phi-\nu \psi)}=0, \quad \Delta \psi+4 \pi \frac{D q \nu}{Z} e^{-\beta q(\phi-\nu \psi)}=0 \tag{1.3}
\end{equation*}
$$

for some specific parameters D, β and ν, and

$$
Z=Z[\phi, \psi]=\int_{\mathbf{R}^{2}} e^{-\beta q[\phi(\mathbf{x})-v \psi(\mathbf{x})]} d \mathbf{x}
$$

In the high temperature or low density limit, a semi-conformal system of Bennett equations like (1.3) is a reduced form of a nonlinear system of so-called finite-temperature ThomasFermi equations, which describes the relativistic quantum mechanics of a stationary beam of counter-streaming, negatively charged electrons and one species of positively charged ions in the semi-classical limit. Bennett equations also constitute a Liouville-type system, which is generally associated with an asymmetric coefficient matrix with some negative entries and always rank 2. See, e.g., $[5,9,10]$ for details. We remark that if $b^{2} \neq a c$, then (1.3) is equivalent to (1.1) with $N_{1}=N_{2}=\gamma_{1}=\gamma_{2}=0$.

Another motivation for studying coupled equations related to (1.1) arises from the non-abelian Higgs BPS vortex equations (see, e.g., $[1,12,15,19]$)

$$
\left\{\begin{array}{l}
\Delta(u+v)=\theta\left(e^{u}+e^{v}-2\right)+4 \pi \sum_{s=1}^{n} \delta_{p_{s}} \text { in } \mathbf{R}^{2} \tag{1.4}\\
\Delta(u-v)=\eta\left(e^{u}-e^{v}\right)+4 \pi \sum_{s=1}^{n} \delta_{p_{s}} \text { in } \mathbf{R}^{2}
\end{array}\right.
$$

where $\theta, \eta>0$ and $n \in \mathbf{N}$. If we treat a specific solution (\hat{u}, \hat{v}) of (1.4) with repeated points $p_{1}=\cdots=p_{n}=p$, then \hat{u} and \hat{v} must satisfy

$$
\left\{\begin{array}{l}
\Delta \hat{u}=\frac{\theta+\eta}{2} e^{\hat{u}}+\frac{\theta-\eta}{2} e^{\hat{v}}-\theta+4 \pi n \delta_{p} \text { in } \mathbf{R}^{2}, \\
\Delta \hat{v}=\frac{\theta-\eta}{2} e^{\hat{u}}+\frac{\theta+\eta}{2} e^{\hat{v}}-\theta \text { in } \mathbf{R}^{2} .
\end{array}\right.
$$

https://daneshyari.com/en/article/6417164

Download Persian Version:

https://daneshyari.com/article/6417164

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: zhiyou @math.ncu.edu.tw (Z.-Y. Chen), tangyl@math.ncu.edu.tw (Y.-L. Tang).
 1 Work partially supported by Ministry of Science and Technology, Taiwan (No. MOST-103-2115-M-008-011-MY3), the National Natural Science Foundation of China (No. 11401144) and National Center for Theoretical Sciences of Taiwan.
 2 Work partially supported by National Center for Theoretical Sciences of Taiwan.

