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Abstract

This paper is concerned with the wave length λ of smooth periodic traveling wave solutions of the 
Camassa–Holm equation. The set of these solutions can be parametrized using the wave height a (or “peak-
to-peak amplitude”). Our main result establishes monotonicity properties of the map a �−→ λ(a), i.e., the 
wave length as a function of the wave height. We obtain the explicit bifurcation values, in terms of the 
parameters associated with the equation, which distinguish between the two possible qualitative behaviors
of λ(a), namely monotonicity and unimodality. The key point is to relate λ(a) to the period function of 
a planar differential system with a quadratic-like first integral, and to apply a criterion which bounds the 
number of critical periods for this type of systems.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and main result

The Camassa–Holm (CH) equation

ut + 2κ ux − utxx + 3uux = 2uxuxx + uuxxx, x ∈R, t > 0, (1)
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Fig. 1. Smooth periodic TWS ϕ of CH with wave length λ and wave height a.

arises as a shallow water approximation of the Euler equations for inviscid, incompressible and 
homogenous fluids propagating over a flat bottom, where u(x, t) describes the horizontal veloc-
ity component and κ ∈ R is a parameter related to the critical shallow water speed. This equation 
was first derived by Fokas and Fuchssteiner [20] as an abstract bi-Hamiltonian equation with 
infinitely many conservation laws, and later re-derived by Camassa and Holm [4] from physical 
principles. For a discussion on the relevance and applicability of the CH equation in the con-
text of water waves we refer the reader to Johnson [29–31] and more recently Constantin and 
Lannes [13]. We point out that for a large class of initial conditions the CH equation is an inte-
grable infinite-dimensional Hamiltonian system [1,7,8,14,15,30], and it is known that the solitary 
waves of CH are solitons which are orbitally stable [15,19]. The smooth periodic traveling wave 
solutions are orbitally stable as well [34]. Some classical solutions of the CH equation develop 
singularities in finite time in the form of wave breaking: the solution remains bounded but its 
slope becomes unbounded [5,7,11,12,18,36,38]. After blow-up the solutions can be recovered in 
the sense of global weak solutions, see [2,3] and also [27,25].

In the present paper, we consider traveling wave solutions of the form

u(x, t) = ϕ(x − c t), (2)

for c ∈ R and some function ϕ : R → R. We denote s = x − ct the independent variable in the 
moving frame. Inserting the Ansatz (2) into Eq. (1) and integrating once we obtain the corre-
sponding equation for traveling waves,

ϕ′′(ϕ − c) + (ϕ′)2

2
+ r + (c − 2κ)ϕ − 3

2
ϕ2 = 0, (3)

where r ∈ R is a constant of integration and the prime denotes derivation with respect to s. 
A solution ϕ of (3) is called a traveling wave solution (TWS) of the Camassa–Holm equa-
tion (1). Lenells [35] provides a complete classification of all (weak) traveling wave solutions 
of the Camassa–Holm equation. In the present paper, we focus on smooth periodic TWS of the 
Camassa–Holm equation, which can be shown to have a unique maximum and minimum per 
period, see [35]. In the context of fluid dynamics the period of such a solution is called wave 
length, which we will denote by λ. The difference between the maximum (wave crest) and the 
minimum (wave trough) is called wave height, see Fig. 1, which we will denote by a (in some 
contexts this quantity is also called “peak-to-peak amplitude”).

The aim of this paper is to study the dependence of the wave length λ of smooth periodic TWS 
of the Camassa–Holm equation (1) on their wave height a. Our main result shows that λ(a) is a 
well-defined function and that it is either monotonous or unimodal. More precisely:

Theorem A. Given c, κ with c �= −κ , there exist real numbers r1 < rb1 < rb2 < r2 such that the 
differential equation (1) has smooth periodic TWS of the form (2) if, and only if, the integration 
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