

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 259 (2015) 4763-4798

www.elsevier.com/locate/jde

Regularity analysis for an abstract system of coupled hyperbolic and parabolic equations

Jianghao Hao ^{a,1}, Zhuangyi Liu ^{b,*}, Jiongmin Yong ^{c,d,2}

^a School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China
 ^b Department of Mathematics and Statistics, University of Minnesota, Duluth, MN 55812-2496, USA
 ^c Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
 ^d School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received 4 February 2015 Available online 20 July 2015

Abstract

In this paper, we provide a complete regularity analysis for the following abstract system of coupled hyperbolic and parabolic equations

$$\begin{cases} u_{tt} = -Au + \gamma A^{\alpha} w, \\ w_{t} = -\gamma A^{\alpha} u_{t} - kA^{\beta} w, \\ u(0) = u_{0}, \quad u_{t}(0) = v_{0}, \quad w(0) = w_{0}, \end{cases}$$

where A is a self-adjoint, positive definite operator on a complex Hilbert space H, and $(\alpha, \beta) \in [0, 1] \times [0, 1]$. We are able to decompose the unit square of the parameter (α, β) into three parts where the semigroup associated with the system is analytic, of specific order *Gevrey* classes, and non-smoothing, respectively. Moreover, we will show that the orders of *Gevrey* class is sharp, under proper conditions. © 2015 Elsevier Inc. All rights reserved.

MSC: 35B65; 35K90; 35L90; 47D03; 93D05

Keywords: Hyperbolic-parabolic equations; Analytic semigroup; Gevrey class semigroup

E-mail address: zliu@d.umn.edu (Z. Liu).

^{*} Corresponding author.

¹ This author was supported by NNSFC No. 61374089 and Shanxi Scholarship Council of China No. 2013-013.

² This author was partially supported by NSF Grants DMS-1007514 and DMS-1406776.

1. Introduction

Let *H* be a complex Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\| \cdot \|$. We consider the following abstract system of coupled hyperbolic and parabolic equations:

$$\begin{cases} u_{tt} = -Au + \gamma A^{\alpha} w, \\ w_{t} = -\gamma A^{\alpha} u_{t} - k A^{\beta} w, \\ u(0) = u_{0}, \quad u_{t}(0) = v_{0}, \quad w(0) = w_{0}, \end{cases}$$
(1.1)

where A is a self-adjoint, positive definite (unbounded) operator on a complex Hilbert space H; $\gamma \neq 0$, k > 0, and $\alpha, \beta \in [0, 1]$ are fixed real numbers. Our main interest is the regularity of the solution to this system in terms of the parameters α, β .

We define

$$\mathcal{H} = \mathcal{D}(A^{\frac{1}{2}}) \times H \times H.$$

Any element in \mathcal{H} is denoted by $U = (u, v, w)^T$. Introduce

$$\langle U_1, U_2 \rangle_{\mathcal{H}} = \langle A^{\frac{1}{2}} u_1, A^{\frac{1}{2}} u_2 \rangle + \langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle, \qquad \forall U_i = \begin{pmatrix} u_i \\ v_i \\ w_i \end{pmatrix} \in \mathcal{H}, \ i = 1, 2.$$

Then $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ is an inner product under which \mathcal{H} is a Hilbert space. By denoting $v = u_t$ and $U_0 = (u_0, v_0, w_0)^T$, system (1.1) can be written as an abstract linear evolution equation on the space \mathcal{H} ,

$$\begin{cases}
\frac{dU(t)}{dt} = \mathcal{A}_{\alpha,\beta}U(t), & t \ge 0, \\
U(0) = U_0,
\end{cases}$$
(1.2)

where the operator $\mathcal{A}_{\alpha,\beta}: \mathcal{D}(\mathcal{A}_{\alpha,\beta}) \subseteq \mathcal{H} \to \mathcal{H}$ is defined by

$$\mathcal{A}_{\alpha,\beta} = \begin{pmatrix} 0 & I & 0 \\ -A & 0 & \gamma A^{\alpha} \\ 0 & -\gamma A^{\alpha} & -kA^{\beta} \end{pmatrix},\tag{1.3}$$

with the domain

$$\mathcal{D}(\mathcal{A}_{\alpha,\beta}) = \mathcal{D}(A) \times \mathcal{D}(A^{\alpha \vee \frac{1}{2}}) \times \mathcal{D}(A^{\alpha \vee \beta}), \tag{1.4}$$

where $a \vee b = \max\{a, b\}$ for any $a, b \in \mathbb{R}$. It is known that $\mathcal{A}_{\alpha, \beta}$ (which is identified with its closure) generates a C_0 -semigroup $e^{\mathcal{A}_{\alpha, \beta}t}$ of contractions on \mathcal{H} [1]. Then the solution to the evolution equation (1.2) admits the following representation:

$$U(t) = e^{\mathcal{A}_{\alpha,\beta}t} U_0, \qquad t \ge 0,$$

which leads to the well-posedness of (1.2). With this in hand, regularity and stability are the most interesting properties for the solutions to evolution equations that attract people's attention.

Download English Version:

https://daneshyari.com/en/article/6417198

Download Persian Version:

https://daneshyari.com/article/6417198

<u>Daneshyari.com</u>