

Available online at www.sciencedirect.com

Journal of **Differential Equations**

[J. Differential Equations 258 \(2015\) 4348–4367](http://dx.doi.org/10.1016/j.jde.2015.01.035)

www.elsevier.com/locate/jde

Divergence and Poincaré–Liapunov constants for analytic differential systems

Maite Grau ^a*,*[∗] , Jaume Llibre ^b

^a *Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69, 25001 Lleida, Catalonia, Spain* ^b *Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain*

> Received 1 September 2014; revised 9 December 2014 Available online 9 February 2015

Abstract

We consider a planar autonomous real analytic differential system with a monodromic singular point *p*. We deal with the center problem for the singular point *p*. Our aim is to highlight some relations between the divergence of the system and the Poincaré–Liapunov constants of p when these are defined. © 2015 Elsevier Inc. All rights reserved.

MSC: 34C25; 37G10; 34A34; 34C05

Keywords: Center problem; Poincaré–Liapunov constants; Divergence; Hamiltonian

1. Introduction and statement of the main results

Let *O* be the origin of coordinates of \mathbb{R}^2 and let \mathcal{U}_O be a neighborhood of *O*. We consider two real analytic functions $P(x, y)$ and $Q(x, y)$ in U_Q which vanish at O. In this work we deal with the analytic differential systems of the form

$$
\dot{x} = P(x, y), \qquad \dot{y} = Q(x, y), \tag{1}
$$

where the dot denotes derivative with respect to an independent real variable *t*.

Corresponding author. *E-mail addresses:* mtgrau@matematica.udl.cat (M. Grau), jllibre@mat.uab.cat (J. Llibre).

<http://dx.doi.org/10.1016/j.jde.2015.01.035>

^{0022-0396/}© 2015 Elsevier Inc. All rights reserved.

When all the orbits of system [\(1\)](#page-0-0) in a punctured neighborhood of the singular point *O* are periodic, we say that the origin is a *center*. If the orbits of system [\(1\)](#page-0-0) in a punctured neighborhood of *O* are spiral to *O* when $t \to +\infty$ or $t \to -\infty$, then we say that the origin is a *focus*. In the first case ($t \to +\infty$), we say that it is *stable* and in the second case ($t \to -\infty$), we say that it is *unstable*. If the origin is either a focus or a center, we say that it is a *monodromic* singular point. The *center problem* consists in distinguishing when a monodromic singular point is either a center or a focus. *In the sequel we assume that the origin of system* [\(1\)](#page-0-0) *is monodromic.*

As usual we define the *divergence* of *system* [\(1\),](#page-0-0) and we denote it by $div(x, y)$, as the function

$$
\operatorname{div}(x, y) = \frac{\partial P}{\partial x}(x, y) + \frac{\partial Q}{\partial y}(x, y).
$$

System [\(1\)](#page-0-0) is said to be *Hamiltonian* if div(x, y) \equiv 0. In such a case there exists a neighborhood of the origin U_O and an analytic function $H : U_O \subseteq \mathbb{R}^2 \to \mathbb{R}$, called the Hamiltonian, such that

$$
P(x, y) = -\frac{\partial H}{\partial y}
$$
 and $Q(x, y) = \frac{\partial H}{\partial y}$.

We note that the level curves of *H* are formed by orbits of system [\(1\).](#page-0-0) A Hamiltonian system [\(1\)](#page-0-0) with a monodromic singular point at *O* necessarily has a center at the origin because an analytic function cannot contain a spiral as level curve (unless the analytic function be constant).

Our aim is to highlight some other results relating the divergence of system [\(1\)](#page-0-0) with the solution of the center problem.

Given a real analytic function $f : U_O \subseteq \mathbb{R}^2 \to \mathbb{R}$, where U_O is a neighborhood of the origin $O = (0, 0)$, we consider its Taylor expansion at O :

$$
f(x, y) = f_d(x, y) + O_{d+1}(x, y),
$$

where $d \ge 0$ is an integer and $f_d(x, y)$ is a non-zero homogeneous polynomial of degree d. We say that *f* is of *sign definite* if $f_d(x, y) \ge 0$ or $f_d(x, y) \le 0$ for all $(x, y) \in \mathbb{R}^2$. When $f_d(x, y) \ge 0$ (resp. $f_d(x, y) \le 0$) for all $(x, y) \in \mathbb{R}^2$ we say that *f* is *positive definite* (resp. *negative definite*). It is clear that a necessary condition for $f(x, y)$ to be of sign definite is that *d* is even.

Our first result is the following one.

Proposition 1. *Assume that the origin of an analytic differential system* [\(1\)](#page-0-0) *is a monodromic singular point.* If the divergence $div(x, y)$ *of system* [\(1\)](#page-0-0) *is of sign definite, then the origin of* system (1) is a focus; either unstable if the divergence is positive definite or stable if it is negative *definite.*

This result is proved in Section [2.](#page--1-0) We remark that in the case that the origin of system (1) is a strong focus, then the divergence $div(0, 0) \neq 0$ and the stability of the focus is given by the sign of the number div $(0, 0)$. The previous proposition is a generalization of this fact for any monodromic singular point. See for instance Theorem 2.15 of $[6]$, or $[8]$, for the definitions of these classical concepts.

Assume that the origin of system [\(1\)](#page-0-0) is a monodromic singular point, but not a strong focus. It is well-known that, after a linear change of variables and a constant scaling of the time variable (if necessary), the system can be written in one of the following three forms:

Download English Version:

<https://daneshyari.com/en/article/6417219>

Download Persian Version:

<https://daneshyari.com/article/6417219>

[Daneshyari.com](https://daneshyari.com)