

Contents lists available at ScienceDirect

Journal of Differential Equations

Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation

K. Nakanishi ^{a,*}, W. Schlag ^b

ARTICLE INFO

Article history: Received 26 May 2010 Available online 12 November 2010

MSC: 35L70 35Q55

Keywords:
Nonlinear wave equation
Ground state
Hyperbolic dynamics
Stable manifold
Unstable manifold
Scattering theory
Blow up

ABSTRACT

The analysis of global dynamics of nonlinear dispersive equations has a long history starting from small solutions. In this paper we study the focusing, cubic, nonlinear Klein-Gordon equation in \mathbb{R}^3 with large radial data in the energy space. This equation admits a unique positive stationary solution O, called the ground state. In 1975 Payne and Sattinger showed that solutions u(t)with energy $E[u,\dot{u}]$ strictly below that of the ground state are divided into two classes, depending on a suitable functional K(u): If K(u) < 0, then one has finite time blow-up, if $K(u) \ge 0$ global existence; moreover, these sets are invariant under the flow. Recently, Ibrahim, Masmoudi and the first author [22] improved this result by establishing scattering to zero for $K[u] \ge 0$ by means of a variant of the Kenig-Merle method (Kenig and Merle, 2006, 2008 [25,26]). In this paper we go slightly beyond the ground state energy and we give a complete description of the evolution in that case. For example, in a small neighborhood of Q one encounters the following trichotomy: On one side of a center-stable manifold one has finite time blow-up for $t \ge 0$, on the other side scattering to zero, and on the manifold itself one has scattering to Q, both as $t \to +\infty$. In total, the class of data with energy at most slightly above that of Q is divided into nine disjoint non-empty sets each displaying different asymptotic behavior as $t \to \pm \infty$, which includes solutions blowing up in one time direction and scattering to zero on the other. The analogue of the solutions found by Duyckaerts and Merle (2009, 2008) [13,14] for the energy critical wave and Schrödinger equations appear here as the unique one-dimensional stable/unstable manifolds approaching ± 0 exponentially as $t \to \infty$ or $t \to -\infty$, respectively. The main technical ingredient in our

E-mail addresses: n-kenji@math.kyoto-u.ac.jp (K. Nakanishi), schlag@math.uchicago.edu (W. Schlag).

^a Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan

^b Department of Mathematics, The University of Chicago, Chicago, IL 60615, USA

^{*} Corresponding author.

proof is a "one-pass" theorem which excludes the existence of (almost) homoclinic orbits between Q (as well as -Q) and (almost) heteroclinic orbits connecting Q with -Q. In a companion paper (Nakanishi and Schlag, 2010 [31]) we establish analogous properties for the NLS equation.

© 2010 Elsevier Inc. All rights reserved.

Contents

1.	Introduction		2300
2.	The ground state		2305
3.	Center-stable manifold		2308
4.	One-pass theorem		2312
	4.1.	Eigenmode dominance	2313
	4.2.	Ejection process	2314
	4.3.	Variational lower bounds	2315
	4.4.	Sign function away from the ground states	2317
	4.5.	Vanishing kinetic energy leads to scattering	2318
	4.6.	Local virial identity and non-existence of almost homoclinic orbits	2319
5.	Blow-up after ejection		2322
6.	Scattering after ejection		2322
7.	Classification of the global behavior, proof of Theorem 1.1		2327
Acknowledgments			2331
Appendix A. Table of notation			2332
References			2332

1. Introduction

In this paper we study the global behavior of general solutions to the nonlinear Klein–Gordon equation (NLKG) with the focusing cubic nonlinearity on \mathbb{R}^3 , i.e.,

$$\ddot{u} - \Delta u + u = u^3, \qquad u(t, x) : \mathbb{R}^{1+3} \to \mathbb{R}, \tag{1.1}$$

which conserves the energy

$$E(\vec{u}) := \int_{\mathbb{R}^3} \left[\frac{|\dot{u}|^2 + |\nabla u|^2 + |u|^2}{2} - \frac{|u|^4}{4} \right] dx.$$
 (1.2)

We regard $H^1(\mathbb{R}^3) \times L^2(\mathbb{R}^3)$ as the phase space for this infinite dimensional Hamiltonian system. In other words, we write the solutions as

$$\vec{u}(t) := (u(t), \dot{u}(t)) \in \mathcal{H} := H_{\text{rad}}^1 \times L_{\text{rad}}^2. \tag{1.3}$$

There exists a vast literature on the wellposedness theory for this equation in the energy space since Jörgens [23] and Segal [35], as well as the scattering theory for small data for the focusing nonlinearity as in (1.1) and for large data for the defocusing equation; see Brenner [7,8], Ginibre and Velo [16,17], Morawetz and Strauss [30], and Pecher [33]. In this paper, the scattering of a solution u to a static state φ refers to the following asymptotic behavior: There exists a solution v of the free Klein–Gordon equation such that

Download English Version:

https://daneshyari.com/en/article/6417230

Download Persian Version:

https://daneshyari.com/article/6417230

<u>Daneshyari.com</u>