Stability of periodic solutions of state-dependent delay-differential equations

John Mallet-Paret ${ }^{\mathrm{a}, *, 1}$, Roger D. Nussbaum ${ }^{\mathrm{b}, 2}$
${ }^{\text {a }}$ Division of Applied Mathematics, Brown University, Providence, RI 02912, United States
${ }^{\text {b }}$ Department of Mathematics, Rutgers University, Piscataway, NJ 08854, United States

ARTICLE INFO

Article history:

Received 11 October 2010
Available online 22 February 2011

MSC:

primary 34K13, 34K20, 37L15
secondary 37C27, 37C75

Keywords:
Delay-differential equations
State-dependent delay
Periodic solution
Orbital stability
Asymptotic phase

A B S T R A C T

We consider a class of autonomous delay-differential equations

$$
\dot{z}(t)=f\left(z_{t}\right)
$$

which includes equations of the form

$$
\begin{align*}
& \dot{z}(t)=g\left(z(t), z\left(t-r_{1}\right), \ldots, z\left(t-r_{n}\right)\right) \\
& r_{i}=r_{i}(z(t)) \text { for } 1 \leqslant i \leqslant n \tag{*}
\end{align*}
$$

with state-dependent delays $r_{i}(z(t)) \geqslant 0$. The functions g and r_{i} satisfy appropriate smoothness conditions.
We assume there exists a periodic solution $z=x(t)$ which is linearly asymptotically stable, namely with all nontrivial characteristic multipliers μ satisfying $|\mu|<1$. We prove that the appropriate nonlinear stability properties hold for $x(t)$, namely, that this solution is asymptotically orbitally stable with asymptotic phase, and enjoys an exponential rate of attraction given in terms of the leading nontrivial characteristic multiplier.
A principal difficulty which distinguishes the analysis of equations such as $(*)$ from ones with constant delays, is that even with g and r_{i} smooth, the associated function f is not smooth in function space. Techniques of Hartung, Krisztin, Walther, and Wu are employed to resolve these issues.
© 2010 Published by Elsevier Inc.

[^0]
1. Introduction

In this paper we study stability questions for a broad class of autonomous state-dependent delaydifferential equations. Specifically, we prove that linearized asymptotic stability of a periodic solution $x(t)$ implies nonlinear (Lyapunov) stability of that solution, in fact, asymptotic orbital stability with asymptotic phase, and exponential attraction at a rate determined by the leading nontrivial characteristic multiplier. This is, of course, the analog of a classic theorem in ordinary differential equations; see, for example, [1]. The corresponding result for retarded equations with constant delay also has been known for many years; see [7].

Among the equations we treat are those with pointwise state-dependent delays such as

$$
\begin{equation*}
\dot{z}(t)=g\left(z(t), z\left(t-r_{1}\right), \ldots, z\left(t-r_{n}\right)\right), \quad r_{i}=r_{i}(z(t)) \text { for } 1 \leqslant i \leqslant n, \tag{1.1}
\end{equation*}
$$

where

$$
g: U_{g} \subseteq \mathbf{R}^{m(n+1)} \rightarrow \mathbf{R}^{m}, \quad r_{i}: U_{r_{i}} \subseteq \mathbf{R}^{m} \rightarrow[0, R] \quad \text { for } 1 \leqslant i \leqslant n
$$

for some (typically open) sets U_{g} and $U_{r_{i}}$. In the case $n=1$ this equation takes the form

$$
\begin{equation*}
\dot{z}(t)=g(z(t), z(t-r)), \quad r=r(z(t)) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
g: U_{g} \subseteq \mathbf{R}^{2 m} \rightarrow \mathbf{R}^{m}, \quad r: U_{r} \subseteq \mathbf{R}^{m} \rightarrow[0, R] \tag{1.3}
\end{equation*}
$$

The model equation

$$
\begin{equation*}
\varepsilon \dot{z}(t)=-z(t)-k z(t-r), \quad r=r(z(t))=1+z(t) \tag{1.4}
\end{equation*}
$$

with $\varepsilon>0$ and $k>1$, considered in [5] (see also [4]), is a special case.
Generally, we follow the setting of Walther [8] for state-dependent equations (see also Hartung, Krisztin, Walther, and Wu [3]), which we now outline. Consider an autonomous equation

$$
\begin{equation*}
\dot{z}(t)=f\left(z_{t}\right) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{align*}
& f: U_{X} \subseteq X \rightarrow \mathbf{R}^{m} \quad \text { is continuous, } \quad X=C\left([-R, 0], \mathbf{R}^{m}\right), \\
& z_{t} \in X \text { is given by } z_{t}(\theta)=z(t+\theta) \quad \text { for } \theta \in[-R, 0] \tag{1.6}
\end{align*}
$$

and where U_{X} is an open subset of X. This is the classic setting of Hale, as described in the book of Hale and Verduyn Lunel [2]. Local existence of the initial value problem

$$
\begin{equation*}
z_{0}=\varphi \tag{1.7}
\end{equation*}
$$

for any $\varphi \in U_{X}$ in forward time is guaranteed, that is, the problem (1.5), (1.7) has a solution $z(t)$ for $0 \leqslant t<\delta$ for some $\delta>0$. Note that Eq. (1.2) falls into this class by taking

$$
\begin{equation*}
f(\varphi)=g(\varphi(0), \varphi(-r(\varphi(0)))) . \tag{1.8}
\end{equation*}
$$

https://daneshyari.com/en/article/6417255

Download Persian Version:

https://daneshyari.com/article/6417255

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jmp@dam.brown.edu (J. Mallet-Paret), nussbaum@math.rutgers.edu (R.D. Nussbaum).
 ${ }^{1}$ Partially supported by NSF DMS-0500674, and by the Center for Nonlinear Analysis, Rutgers University.
 2 Partially supported by NSF DMS-0701171, and by the Lefschetz Center for Dynamical Systems, Brown University.

