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1. Introduction

Let H be a Hilbert space and A : D(A) C H — H be a densely defined positive self-adjoint unbounded
operator. For 7 > 0, ¢ € H and f € L'(]0,7], H), consider the problem of solving the final value problem,
denoted briefly as FVP,

u + Au = f(¢), 0<t<r (1.1)
u(r) = ¢. (1.2)

Here, L([0,7], H) denotes the space of all H-valued integrable functions on [0, 7], i.e., g € L*([0, 7], H) if
and only if g : [0,7] — H is measurable and
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The problem is to find a function w : [0,7] — H which is differentiable and satisfies the equations (1.1)
and (1.2). It is well known that the above FVP is ill-posed (cf. Goldstein [6]). Therefore, in order to obtain
stable approximate solutions for (1.1)—(1.2), some regularization method has to be employed. A particular
case of the above FVP which has got wide applications in science and engineering is the backward heat
conduction problem (BHCP) in which the Hilbert space H is the space L?(f2), where () is a domain in R¥
for some k € N, and —A = A, the Laplacian operator in L?(Q2) (see Isakov [7], Nair [10]).

The homogeneous FVP, that is, when f = 0, has been studied by many authors using different approaches.
Many of them have used the quasi-reversibility method, introduced by Lattes and Lions [8]. The main idea
of this method is to consider a perturbed form of the operator A (see e.g., Miller [9], Showalter [12] and
Boussetila and Rebbani [2]). Another approach to study the homogeneous FVP considered by some authors
is by perturbing the final value; such method is called quasi-boundary value method (see, e.g. Clark and
Oppenheimer [3], Denche and Bessila [4], Denche and Djezzar [5]). Clark and Oppenheimer, Denche and
Bessila have restricted their study of quasi-boundary value method when operator A is having discrete
spectrum. In [1], Boussetila and Rebbani have studied homogeneous FVB by perturbing the final value as
well as the operator A.

We may recall from semigroup theory (cf. [11]) that if u(-) is a solution of the equation

w + Au = f(t), 0<t<,

then it has the representation
t
u(t) = S(t)po + / S(t—s)f(s)ds
0

where ¢o = u(0) and {S(¢) : t > 0} is the Cj semigroup generated by —A. In fact,

o0

S(t) =e = /e*t)‘dE,\,

0

where {E) : A > 0} is the resolution of identity of A, and {e7*4 : ¢+ > 0} is a differentiable semigroup
(cf. [11]). With the above notation,

o] t o]

u(t) = /e_t)‘dE)\(bo-i-/ /6_(t_s))‘dE>\f(s) ds.

0 0 0

Note that the above representation is meaningful whenever f € L([0, 7], H), and in that case u : [0,7] — H
defined by

[e'e} t [e%s}
u(t) = / e~ dEx¢o + / / e~ =B, f(s) | ds (1.3)
0 0 0

is called the mild solution of the initial value problem (IVP)

u + Au = f(t), 0<t<T, (1.4)
u(0) = o (1.5)
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